Bayes' rule (also called Bayes' law or Bayes' identity) is a simple
equation relating [math]\href{/cs2800/wiki/index.php/Pr}{Pr}(B \href{/cs2800/wiki/index.php/%5Cmid}{\mid} A)
[/math] and [math]\href{/cs2800/wiki/index.php/Pr}{Pr}(A \href{/cs2800/wiki/index.php/%5Cmid}{\mid} B)
[/math]:
[math]\href{/cs2800/wiki/index.php/Pr}{Pr}(A \href{/cs2800/wiki/index.php/%5Cmid}{\mid} B) = \frac{\href{/cs2800/wiki/index.php/Pr}{Pr}(B \href{/cs2800/wiki/index.php/%5Cmid}{\mid} A) \href{/cs2800/wiki/index.php/Pr}{Pr}(A)}{\href{/cs2800/wiki/index.php/Pr}{Pr}(B)}
[/math]
Proof:
By
definition,
[math]\href{/cs2800/wiki/index.php/Pr}{Pr}(A \href{/cs2800/wiki/index.php/%5Cmid}{\mid} B) = \href{/cs2800/wiki/index.php/Pr}{Pr}(A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B) / \href{/cs2800/wiki/index.php/Pr}{Pr}(B)
[/math] and
[math]\href{/cs2800/wiki/index.php/Pr}{Pr}(B \href{/cs2800/wiki/index.php/%5Cmid}{\mid} A) = \href{/cs2800/wiki/index.php/Pr}{Pr}(A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B) / \href{/cs2800/wiki/index.php/Pr}{Pr}(A)
[/math]. Multiplying by the denominators gives
[math]\href{/cs2800/wiki/index.php/Pr}{Pr}(A \href{/cs2800/wiki/index.php/%5Cmid}{\mid} B) \href{/cs2800/wiki/index.php/Pr}{Pr}(B) = \href{/cs2800/wiki/index.php/Pr}{Pr}(A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B) = \href{/cs2800/wiki/index.php/Pr}{Pr}(B \href{/cs2800/wiki/index.php/%5Cmid}{\mid} A)\href{/cs2800/wiki/index.php/Pr}{Pr}(A)
[/math]. Dividing by
[math]\href{/cs2800/wiki/index.php/Pr}{Pr}(B)
[/math] gives the result.