- Diagnosis
 (specific: do I need example)
 - when to use diag?

- Negating statements
 - are there multiple answers?

✓ Proofs that f^-1 (inverses) exist
 - what can you define/use.
 - relationships between f, f^-1, injectivity

- Example: are all finite sets countable?

✓ Cardinality
 - def's
 - \(\subseteq \) vs. \(\leq \) vs. \(\neq \) vs. \(\neq \)
 - proving \(X \) countable.
 - Proving uncountable by showing \(|X| > |\mathbb{N}| \)?

- Equivalence relations
 - def's, examples.
Inverses & Injectivity

\[f \text{ has a left inverse iff } f \text{ is injective.} \]
\[f \text{ has a right inverse iff } f \text{ is surjective.} \]
\[f \text{ has a 2-sided inverse iff } f \text{ is bijective.} \]

Claim: If \(f \) is injective then \(f \) has a left inverse.

Proof: Assume \(f: A \rightarrow B \) is injective.

We say \(f \) has a left inverse.

Let \(g: B \rightarrow A \) be given as follows:

- If \(y = f(x) \) for some \(x \), let \(g(y) \) be chosen any \(x \in A \).
- If \(y \) is not an output of \(f \), let \(g(y) \) be \(x_0 \) with \(x_0 \neq x \).

Does \(g \) give an output for every input?

Yes.

If \(y = f(x_1) \) and \(y = f(x_2) \), then \(f(x_1) = f(x_2) \) so (since \(f \) is injective) \(x_1 = x_2 \).
Diagonalization

When to diagonalize?
- When you want to show X is uncountable.

Ex: \mathbb{R} is the set of real #s between 0 & 1 is uncountable.

Pf: Assume X is countable. Then $|\mathbb{N}| \geq |X|$, so $\exists f: \mathbb{N} \to X$ that is surjective.

f might be drawn:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000...</td>
</tr>
<tr>
<td>1</td>
<td>0.5000...</td>
</tr>
<tr>
<td>2</td>
<td>0.1100...</td>
</tr>
<tr>
<td>3</td>
<td>0.2111...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

x_0 = 0.5566...

x_0 can't be equal to $f(n)$ because the nth digit after the decimal point is different.

This says f never outputs x_0, so f can't be surjective, so this is a contradiction.

F is surjective means $\forall x \in X$, $\exists n \in \mathbb{N}$, $f(n) = x$.
F is not surjective means $\exists x \in X$, $\forall n \in \mathbb{N}$, $f(n) \neq x$.

Defn: X is countable means $|\mathbb{N}| \geq |X|$.
X is countable means $|N| \geq |X|$ means $\exists f: N \to X$ surjective

\mathbb{Z} is countable
$f: N \to \mathbb{Z}$

f is clearly surjective, because every $n \in \mathbb{Z}$ is output by f

$N \times N$ is countable

$f(k) = n$ if pair found when traversing diagonal as in picture.

$|A| \geq |B|$ or $|A| > |B|

\{ |A| \geq |B| \text{ and } |A| \neq |B| \}

\text{good descriptors:}