Lecture 31: Handling overcounting

Last time: suppose $|A| = k$, $|B| = l$, ..., and all these sets are disjoint. How many ways are there to:

- Select an element of A?
- Select an element of A and an element of B?
- Select either an element of A or an element of B?
- Choose a 0 and an element of A_i, where $|A_i| = n_i$?
- Choose a subset of A?
Handling duplicates / ignoring details

Question: I have 4 balls: a white, a blue, and a two reds. How many ways are there to order them, if the two red balls are indistinguishable?

1. Choose 1st ball
 - 4 options: 3 reds, 2 reds, 1 red.

2. Choose ball 2
 - 3 choices:
 - w, r₁, r₂ → (w, r₁, r₂, b)
 - r₂, w, r₁ → (r₂, w, r₁, b)
 - r₁, w, r₂ → (r₁, w, r₂, b)

3. Choose ball 3
 - 2 choices:
 - w, b
 - r₂, b

4. Choose ball 4
 - 1 choice: b

Total: \[\frac{4 \times 3 \times 2 \times 1}{2} = 12 \]
Quotient rule

Quotient rule: If \(|A| = n\) and we partition \(A\) into groups, each of size \(k\), then there are \(n/k\) groups.

Quotient rule in terms of equivalence classes: If \(|A| = n\) and for each \(a \in A\), \(|[a]_R| = k\) (i.e. \(a\) is equivalent to \(k\) things) then \(|A/R| = n/k\).
Counting sequences

Question: If $|A| = n$, how many orderings of A are there?

Question: If $|A| = n$, how many orderings of k elements of A are there?

1. \[\text{# orderings} = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 = n! \]

2. \[\text{# orderings} = \frac{n \cdot (n-1) \cdot (n-2) \cdots (n-k+1)}{(n-k)!} \]

3. \[\frac{n!}{(n-k)!} \]

Step 1: Choose a perm. of A

\[(a_1, a_2, a_3, \ldots) \]

\[(a_3, a_1, a_2, \ldots) \]

$n!$ opts

- $k = 3$
 - $n = 5$

- $k = 2$
 - $n = 5$

Each output permutation is equivalent to $n! / (n-k)!$ other poss.
Counting subsets

Question: If $|A| = n$, how many subsets of A are there of size k?

1. Choose ordering of k elements of A.
 \[
 \frac{n!}{(n-k)!}
 \]
 \[(1,2) \not\approx (2,1)\]

2. Each ordering is equivalent to other orderings with same k elts, there $k!$ orderings.

By quotient rule, total # subsets is \[
\frac{n!}{k!(n-k)!} = \binom{n}{k}
\]

"n choose k"
Combinatorial proofs

Claim: \(2^n = \sum_{k=0}^{n} \binom{n}{k} \)

Proof:

Let \(A = \{a_1, a_2, \ldots, a_n\} \). LHS is \(\# \) of subsets of \(A \), because we construct a subset \(B \subseteq A \) by

1. Choose whether \(a_i \in B \), \(a_i \notin B \)
2. Yes \(\Rightarrow \) yes
 \[a_i \in B \]
 \[a_i \notin B \]
 \[\text{no} \]
3. So \(\# \) of subsets of \(A \) is \(2^n \).
4. Choose \(\binom{n}{k} \) \(\text{sets of size } k \).
5. \(k=0 \Rightarrow \binom{n}{0} \)
6. \(k=1 \Rightarrow \binom{n}{1} \)
7. \(k=n \Rightarrow \binom{n}{n} \)

This process outputs all subsets of \(A \).

So \(\# \) of subsets of \(A \) is \(\sum_{k=0}^{n} \binom{n}{k} \).

So \(2^n = \sum_{k=0}^{n} \binom{n}{k} \)
Combinatorial proofs

Claim: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: Let \(A \) be a set of size \(n \).

LHS is \(\# \) of \(k \)-element subsets \(B \subseteq A \).

RHS is \(\# \) of \(n-k \)-element subsets \(C \subseteq A \).

Given \(n=6 \):

\[A = \{1, 2, 3, 4, 5, 6\} \quad k=2 \]

\[B = \{2, 3, 5\} \]

\[\text{let } C = A \setminus B \text{; then } C \text{ is a } n-k \text{-element subset of } A \]

\[C = \{1, 2, 4, 6\} \quad \Rightarrow \quad B = \{3\} \]

So \(f: 2^{\text{subsets}} \rightarrow 2^{\text{subsets}} \) given by \(f(B) = A \setminus B \) is a bijection.

So \(|2^{\text{subsets}}| = |2^{\text{subsets}}| \) so LHS = RHS.