Lecture 24: Deterministic finite automata (model computers)

Primary objects of study:

- Finite automata (model computers)
- Regular expressions (string patterns)
- Applications in computer architecture, string processing

Analysis techniques:

- Structural induction, translating between computational models, connecting step-by-step operation with end-to-end specifications
- Applications in programming language design, systems analysis

Theoretical results:

- Many of our simple computational models are equally powerful
- There are problems that our simple computers can’t solve
- In other courses, you would extend these techniques to fully general models
- Similar techniques and results are used to reason about efficient computation
An automaton by example

Here is an example deterministic finite automaton (DFA):

\[\Sigma = \{0, 1\} \]
\[\Sigma^* = 100101 \]

inputs: strings with characters in an alphabet \(\Sigma \)
outputs: "yes" or "no"

reject state.
accept state.

input: 100101

output: "yes"
\[\Sigma = \{0, 1\} \]

Start

\[S(q_0, 0) = q_0 \Rightarrow 0 \]

Exactly at most one transition from any state \(q \) on any character \(a \).

A DFA \(M = (Q, \Sigma, \delta, q_0, A) \) contains

Every automaton has:
- A set of states \(Q \) (finite)
- An alphabet \(\Sigma \)
- A transition function \(\delta: Q \times \Sigma \rightarrow Q \)
- A start state \(q_0 \in Q \)
- A set \(A \subseteq Q \) called the set of accepting states.
Language of a DFA

\[L(M) = \{ 100101, 1, 10, \ldots \} \]
\[= \{ x \mid x \text{ has an odd } \# \text{ of } 1s \} \]

Defn: The language of \(M \), written \(L(M) \), is the set of strings that \(M \) accepts.

\(x = 100101 \) is accepted
\(x = 0011 \) is rejected
Exercise: building an automaton

\[L = \{ x \mid x \text{ does not contain } 010 \text{ as a substring} \} \]

\[= \{ 0, 1, \ldots, 0110 \} \]

\[A = \{ q_0, q_1, q_2, q_3 \} \]

\[Q = \{ \{q_0, q_1, q_2, q_3\} \} \]

\[\Sigma = \{ 0, 1 \} \]

\[\delta(\langle q_2, 0 \rangle, 0) = \langle q_1, 0 \rangle \]

\[q_0 = \delta(\langle \varepsilon, 0 \rangle, 1) \]

\[A = \{ q_0, q_1, q_2, q_3 \} \]
Formal definitions

Defn: A deterministic finite automaton (or DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, A)$ where

- Q is a finite set (elements $q \in Q$ are called states)
- Σ is a finite set (elements $a \in \Sigma$ are called characters)
- $\delta : Q \times \Sigma \rightarrow Q$ is called the transition function
- $q_0 \in Q$ is called the start state
- $A \subseteq Q$ is the set of accepting states

$L(M) =$ set of strings accepted by M

x is accepted by M if we process x

starting in q_0

we end in A

Defn: The extended transition function $\hat{\delta} : Q \times \Sigma^* \rightarrow Q$ gives the state M transitions to after processing x, starting in state q_0.

Formally:

$\hat{\delta}(q_0, \varepsilon) = q_0$

$x \in \Sigma^* \implies \hat{\delta}(q_0, x) = \hat{\delta}(\hat{\delta}(q_0, x), a)$

x is a substring of xa

Defn: We say M accepts x if

$\hat{\delta}(q_0, x) \in A$. We say M rejects x

otherwise.

$L(M) = \{ x \in \Sigma^* \mid \hat{\delta}(q_0, x) \in A \}$