Proof outlines / proof techniques (from last time)

<table>
<thead>
<tr>
<th>Proposition</th>
<th>To prove it</th>
<th>To use it</th>
<th>To disprove</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P \land Q)</td>
<td>Prove both (P) and (Q)</td>
<td>Use either (P) or (Q)</td>
<td></td>
</tr>
<tr>
<td>(P \lor Q)</td>
<td>Prove (P). Alternatively, prove (Q)</td>
<td>Prove (R) in the (P) and (Q) cases to conclude (R) (case analysis)</td>
<td></td>
</tr>
<tr>
<td>(\forall x \in A, , P(x))</td>
<td>Prove (P(y)) for an arbitrary (y \in A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Claim: (for all sets \(A, \, B, \) and \(C \)) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \subseteq \)

Proof: Choose arbitrary sets \(A, \, B, \) and \(C. \) We want to show \(\text{LHS} \subseteq \text{RHS} \) and \(\text{RHS} \subseteq \text{LHS}. \)

To see \(\text{LHS} \subseteq \text{RHS}, \) choose an arbitrary \(x \in \text{LHS}. \) Then either \(x \in A \) or \(x \in B \cap C. \) In the former case, we have either \(x \in A \) or \(x \in B, \) so we know \(x \in A \cup B; \) Similarly, \(x \in A \cup C. \) Thus in this case, \(x \in \text{RHS}. \)

In the latter case, we have \(x \in B \cap C \) so \(x \in B \) and thus \(x \in A \cup B; \) similarly \(x \in A \cup C \) so again \(x \in \text{RHS}. \) In all cases where \(x \in \text{LHS}, \) we see \(x \in \text{RHS}. \)

To see that \(\text{RHS} \subseteq \text{LHS}, \) choose an arbitrary \(x \in \text{RHS}. \) We know that either \(x \in A \) or \(x \notin A. \) In the former case, since \(x \in A, \) we have \(x \in A \cup (B \cap C) = \text{LHS}. \)

In the latter case, we know that either \(x \in A \) or \(x \in B \) (since \(x \in A \cup B), \) but since \(x \notin A \) we must have \(x \in B. \) A similar argument shows \(x \in C, \) so \(x \in B \cap C \) and thus \(x \in \text{LHS}. \)
Injectivity

\[f : A \rightarrow B \text{ is injective if for all } x_1, x_2 \in A, \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2. \]

\[g : A \rightarrow B \text{ is not injective because } g(1) = g(2), \text{ i.e., there are 2 inputs giving the same output.} \]

\[\text{Def: } f \mid A \rightarrow B \text{ is injective if } \forall x_1, x_2 \in A, \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2. \]

\[\text{All: } f : A \rightarrow B \text{ is inj. if } \forall x_1, x_2 \in A, \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2. \]

\[\text{Alt: } f : A \rightarrow B \text{ is inj. if } \forall x_1, x_2 \in A, \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2. \]

Contrapositives:

- "if P then Q" is contrapositive of "if Q is false then P is false".
- "if Q is false then P is false" is contrapositive of "if P then Q".

"Official def":

\[\forall x_1, x_2 \in A, \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2. \]
Composition and inverses

\[\begin{array}{ccc}
A & \rightarrow & B \\
1 & \rightarrow & a \\
2 & \rightarrow & b \\
3 & \rightarrow & c \\
\end{array} \]

\[\begin{array}{ccc}
B & \rightarrow & C \\
a & \rightarrow & y \\
b & \rightarrow & z \\
\end{array} \]

Definition: If \(f : A \rightarrow B \) and \(g : B \rightarrow C \), then \((g \circ f) : A \rightarrow C \) is given by

\[(g \circ f)(a) := g(f(a)) \]

Definition: We say that \(g \) is a left-inverse of \(f : A \rightarrow B \) if for all \(x \in A \),

\[g(f(x)) = x \]

i.e., \((g \circ f)(x) = x \).