Lecture 38: hashing

- Hashing is a tool to turn inputs into "nice", "spread out" random variables
- We'll set up model for hashing

Applications

- Hash tables are super-useful programming tools
- Load balancing in distributed systems
- Efficient approximation algorithms
Algorithm (e.g., bucket) takes \(t \) steps for each person in the same bucket as \(x \), for each \(k \) in \(1, 2, \ldots \) steps.

\[
\begin{align*}
T &= 1 + 1 + 1 + \ldots + 1 = 13 \\
\sum_{k=1}^{3} t_k &= 1 + 2 + 2 + 1 + 3 + 3 + 3 = 17
\end{align*}
\]

\(T \) is an RV with \(T(s) = 10 \) and \(T(s_3) = 6 \)...

Sample space \(S \):

\[S = \{ \text{Alice, Bob, } \ldots \} \]

Random variable \(X \):

\[X = \{ \text{Alice, Bob, } \ldots \} \]

Y = buckets \(E_1, \ldots, E_m \)

Function valued RV \(H \):

\[H : S \rightarrow [X \rightarrow Y] \]

\[H(s_i) = \hat{s}_i \]

\[H(x) = (H(s))(x) \]

\(H_x \) is a \(Y \)-valued RV.
what is expected # of values that hash to bucket 1?

8 names \(x \) \(|x| = 8 \)
26 buckets \(y \) \(|y| = 26 \)
expected # names in bucket \(9/26 \)

let \(N_x = \# \) of \(x \)'s with \(H_x = y \)

let \(I_x = \) indicator variable for \(H_x = y \)
i.e., \(I_x(s) = \begin{cases} 1 & \text{if } H_x(s) = y \\ 0 & \text{otherwise} \end{cases} \)

\(N_x = I_{x_1} + I_{x_2} + I_{x_3} + \ldots + I_{x_8} \)

\(E(N_x) = \sum_{x} E(I_x) = \sum_{x} \frac{1}{26} = \frac{9}{26} \)

\[1 \cdot \Pr(H_x = 2) + 0 \cdot \Pr(H_x = 2) \]
\[= \frac{9}{26} = \frac{1}{m} \]

H_{x_1} and H_{x_2} are indep.

Pr(H_{Alice} = 1 \mid H_{Andr} = 1) = \frac{1}{m}

Let \(S \) be a set of names.

Bad: \(H_{Mike} \) is always 1.

\[\forall x, y, \Pr(H_x = y) = \frac{1}{|y|} \]

Bad: everyone hashes to same bucket.

satisfies (1)

let: \(S \) \(|S| = m \)

\(H_x(i) = \{ s_i \} \)

\(\forall x \neq x_2 \)

Pr(H_{Alice} = 1 \mid H_{Andr} = 1) = \frac{1}{m}