Lecture 13: variations on induction

Claim: For every $n \in \mathbb{N}$, if $n \geq 2$ then n can be written as a product of primes $n = p_1 \cdot p_2 \cdots p_k$

Proof attempt: Let P(n) be the statement "there exists a sequence of one or more primes $p_1, \ldots p_k$ with $n = p_1 \cdot p_2 \cdots p_k$." We will show P(2) and P(n+1) assuming P(n).

To see P(2) (i.e. that we can factor 2), choose $p_1=2$; we see that p_1 is prime, and $2=p_1$, so p_1 is a prime factorization of 2.

To see P(n+1), assume P(n), P(n-1), P(n-2) ..., P(2)

We want to show that n+1 can be written as a product of primes. There are two cases. If n+1 is prime, then we can choose $p_1:=n+1$, and we are done.

If n+1 is not prime, then we know that $n+1=k\cdot\ell$ for some $k\geq 2$ and $\ell\geq 2$. We write $k=p'_1\cdot p'_2\cdots p'_i$ and $\ell=p''_1\cdot p''_2\cdots p''_j$ where p'_1,\ldots,p'_i are the prime factors of k and p''_1,\ldots,p''_j are the prime factors of ℓ . Then $n+1=p'_1\cdot p'_2\cdots p'_i\cdot p''_1\cdot p''_2\ldots p''_j$ is a prime factorization of n + 1, as required.

A. Looks good K. Bug in inductive hypothesis K. Bug in base case D. Bug in inductive step

Strong induction: (r) prove $\forall n \in (N, P(n))$, (r) prove P(0)

(2) prove P(n+1), assuming P(n), P(n-1), ..., P(0)

Fixing the proof without strong induction

Let P(n) be the statement "there exists a sequence of one or more primes $p_1, \ldots p_k$ with $n = p_1 \cdot p_2 \cdots p_k$.".

On the previous slide, we proved

1. P(2)2. P(n+1) assuming $P(n), P(n-1), P(n-2), \dots, P(2)$ Can we prove $\forall n \geq 2, P(n)$ using only weak induction? Can we prove $\forall n \geq 2$, P(n) using only weak induction?

Let Q(n) be the start $\forall k \in [2...n]$, P(k) InJ. Hyp. i.e. Q(n) is 'P(2) and P(3) and ... P(n)

Q(2): WTS YKE[2...2] P(K). well, the only $k \in [2...2]$ is k=2, we've

Q(n+1), assuming Q(n): WTS The [2...n+1], P(+). Chose ab. he [2.-n+1]. if k=[2...n], then by Q(n), we know P(k). the only remaining case is when it not, So we need to show P(n+1).

we've already proved P(n+1) using P(z)...P(n), we know P(2)... P(n) by Q(1).

Variations on induction

Here is the only "induction principle" you need:

▶ To prove " $\forall n \in \mathbb{N}, P(n)$ " by induction: [1] prove P(0), and [2] prove P(n+1) assuming P(n), for an arbitrary $n \in \mathbb{N}$

Here are some alternate versions that are often useful:

To prove " $\forall n \in \mathbb{N}$, if $n \ge k$ then P(n)" by induction:

[1] prove P(k), and [2] prove P(n+1) assuming P(n), for an arbitrary $n \ge k$

✓ To prove " $\forall n \in \mathbb{N}, P(n)$ " by induction:

[1] prove P(0), and [2] prove P(n) assuming P(n-1), for an arbitrary n>0

✓ To prove " $\forall n \in \mathbb{N}, P(n)$ " by strong induction:

[1] prove P(0), and [2] prove P(n) assuming $P(n-1), P(n-2), \ldots, P(0)$

k>0

> (et Q(n):"if n > k then
P(n)".

t will prove

Q(n+1), assuming Q(n).

Q(0)]: WTS if 0≥k then P(0). well 0≠k, 40 this is racussly true.

Q(n+1) assuming Q(n)

WTS if n+1>k then P(n+1)

3 cases: n+1 < k,

if n+1 <k, Q(n+1) is vacuously

if n+1 = k, we have a proof of P(k), so vere done. (1)

if not >k, then mit, so we can use (2)

Euclidean division

For the next few weeks, we'll be interested in the natural numbers and integers (not the rationals or reals). For this reason:

Avoid writing $\frac{a}{b} = 2$ so you don't have to check that it is an integer.

need (total): every pair how a qual. (rem.

(manbig.): Buotient & cre

(manbig.): Remainder are

cenique

(next time)