Lecture 13: variations on induction
Claim: For every n € N, if n > 2 then n can be written as a product of primes n = py-p> - px

Proof attempt: Let P(n) be the statement “there exists a sequence of one or more primes
pis.-. Pk With n=py - po--- pr." We will show P(2) and P(n+ 1) assuming P(n).

To see P(2) (i.e. that we can factor 2), choose p; = 2; we see that p; is prime, and 2 = py, so

'l

p1 is a prime factorization of 2. . — _— W-ac L3 "S’\forj
| WTO see P(n+ 1), assume P(n), P(n-\) ' O(w-2) ... )P("\ inda cHon .
J\,J\ \ We want to show that n+ 1 can ' of primes. There are two cases. If
Q“’\’ ¥\ n+1is prime, then we can choose p; := n+ 1, and we are done.
\ Sn
c viy. If n+ 1 is not prime, then we know that n+ 1 =k - £ for some k > 2 and ¢ > 2. We write fince L\
(o k=pi-py--p;and £ =pi py---p/ where pi,..., p;are the prime factors of k and onA ,lg'\)

< pys---,p; are the prime factors of £. Then n+1=pj-p5---p;-py-py...p; isa prime So we'\e
'S'( u’/ factorization of n+ 1, as required. assu—ed ?(g_)

QO) ~ Q‘.u A. Looks good XBug in inductive hypothesis KBug in base case| D. %ug in inductive step
R\\E '

b

g,hr.v ‘\I\)w‘-JP“’A:
1. prove \{,\c(}\(,'p('\) p

\f\ prove P(o) a
(L) (fuﬁ— P(Mﬂ/ “”"““‘3 P(I\\’ P(r\“(\) )?< >



Fixing the proof without strong induction

Let P(n) be the statement “there exists a sequence of one or more primes p1, ... pk
with n=py - p2--- pg." .

On the previous slide, we proved
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Can we prove ¥n > 2, P(n) using only weak induction?
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Variations on induction
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Here is the only “induction principle” you need:

» To prove “Vn € N, P(n)" by induction:
[1] prove P(0), and [2] prove P(n + 1) assuming P(n), for an arbitrary n € N (¢+ Q(") -
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Here are some alternate versio&s )that are often useful:
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[1] prove P(0), and [2] prove P(n) assuming P(n — 1), for an arbitrary n > 0
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To prove “¥n € N, P(n)" by strong induction:
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Euclidean division

For the next few weeks, we'll be interested in the natural numbers and integers (not
the rationals or reals). For this reason:
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so you don't have to check that it is an integer.
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