Lecture 26: Unrecognizable languages

Last time:

- The language $L = \{x \in \{0, 1\}^* \mid x \text{ has an odd number of 1s} \}$ is DFA-recognizable
- The language $L = \{x \in \{0, 1\}^* \mid x \text{ does not contain 010} \}$ is DFA-recognizable
- If L_1 and L_2 are DFA-recognizable then so is $L_1 \cap L_2$

Have the following definitions handy for today:

- $L(M), \delta$

Today: is every language recognizable?

Defn: A language is a set of strings.

- $L: \mathbb{N} \to \{0, 1\}^*$ uncountably

So there are more languages than automata, so some languages have no automata.

$L: \text{DFA} \to \text{language}$ is not surjective.
An unrecognizable language

We saw that there exists an unrecognizable language. Here's an example:

Let \(L := \{0^n 1^n \mid n \in \mathbb{N} \} = \{0, 01, 0011, 000111, \ldots \} \)

Claim: \(L \) is not DFA-recognizable

Proof: Assume (for contradiction) that \(L \) is DFA-recognizable, so that \(\exists M \) with \(L(M) = L \). Let \(m \) be a state of \(M \).

Consider \(m \) processing \(0^m \). Know \(m \notin L \), so \(\delta(q_0, 0) \notin A \).

\[\text{Only } m \text{ distinct states to choose from:} \]

\[\text{consider } i, j \text{ for some } i \neq j \]

\[\text{let } w \text{ be first } i \text{ chars of } x, v \text{ next } j-i \]

\[\text{chars, } w \text{ rest of } x. \]

Find a string \(y \) that is accepted by \(M \) but shouldn't be.

\[\text{wwwv} \text{ is accepted, but has more } 0\text{s than } 1\text{s.} \]

\[\text{wwww} \text{ is accepted, but has too many } 0\text{s.} \]

\[\text{uw} \text{ is also accepted, but has too few } 0\text{s.} \]

Contradiction.
Pumping lemma

Claim (pumping lemma):

\[\forall y \quad \exists n \in \mathbb{N}, \text{ such that} \]
\[\forall x \in L \text{ with } \text{len}(x) \geq n, \]
\[\exists u, v, w \in \Sigma^* \text{ such that} \]
\[1. \ x = uvw \quad 3. \ v \neq \varepsilon \]
\[2. \ \text{len}(uv) \leq n \quad 4. \ \forall k \in \mathbb{N}, \ uv^k w \in L \]

Example: Let \(L := \{0^n1^n \mid n \in \mathbb{N}\} \). Then \(L \) is unrecognizable.

Proof of example, using pumping lemma:

Assume \(L \) is DFA rec. Then \(\exists n \) as in PL.

Let \(x = 0^n1^n \). Then \(x \in L \) and \(\text{len}(x) \geq n \).

So \(\exists u,v,w \) as in PL. Since \(\text{len}(uv) \leq n \),
\(v \) must only contain 0's. Since \(v \neq \varepsilon \),
\(v \) has at least one 0. So \(uvw \) has
fewer 0's than 1's, so \(uvw \notin L \). But
PL says \(uv^k w \in L \), a contradiction.
Proof of pumping lemma:

Claim (pumping lemma):

1. For all DFA-recognizable language \(L \).
2. There exists a number \(n \in \mathbb{N} \) such that
3. For all \(x \in L \) with \(\text{len}(x) \geq n \).
4. There exists \(u, v, w \in \Sigma^* \) such that

 \[
 x = uvw, \quad v \neq \varepsilon, \quad \text{len}(vw) \leq n, \quad \forall k \in \mathbb{N}, \ uv^kw \in L
 \]

Proof of pumping lemma:

Choose an arb. DFA-recognizable language \(L \). Then \(\exists \) a DFA \(M \)
with \(L = L(M) \). Let \(n = n(M) \) be the number of states of \(M \).
Choose an arb. \(x \in L \) with \(\text{len}(x) \geq n \).
While processing the first \(n \) chars of \(x \),
we'll pass through all states of \(M \).

\[
\begin{array}{c}
q_0 \\
\downarrow \\
q_1 \\
\downarrow \\
q_2 \\
\downarrow \\
\vdots \\
\downarrow \\
q_i \\
\downarrow \\
q_j \\
\downarrow \\
q_k \\
\downarrow \\
q_{i+1} \\
\downarrow \\
\vdots \\
q_s \\
\end{array}
\]

So \(q_i \) and \(q_j \) are same.

\[
\begin{array}{c}
q_i \\
\downarrow \\
q_j \\
\downarrow \\
\vdots \\
\downarrow \\
q_s \\
\end{array}
\]

Let \(v \) be the string that gets to \(q_i \),
\(w \) be the rest.

Then \(x = uvw \) by construction.

\[
\text{len}(uv) \leq n \quad \text{by constr. (found while processing first } n \text{ chars)}
\]

\[
v \neq \varepsilon \quad \text{otherwise } \Rightarrow \text{Choose arb. } k \in \mathbb{N}, \text{ then}
\]

\[
M \text{ on } uv^kw \text{ will transition to } q_i, \text{ traverse } k \text{ times,}
\]

\[
\text{transition to an accept state.}
\]