Non-determinism

Idea: A non-deterministic finite automaton (NFA) always makes that "right" choice to get to an accept state. If it's possible to accept a string x, it accepts x.

Question: What are the languages of the following NFA?
Formalizing ε-NFA

Defn: An ε-NFA \mathcal{M} consists of:

- A set Q of states
- An alphabet Σ
- A transition function $\delta : Q \times 2^\Sigma \rightarrow 2^Q$
- A start state $q_0 \in Q$
- A set of accept states $A \subseteq Q$

![Diagram of ε-NFA with transitions and states labeled]

- $\delta(q, 0) = \{q, q'\} = \{q''\}$
- $\delta(q, 1) = \emptyset$
- $\varepsilon(q'') = \{q'\}$
- $\varepsilon(q) = \emptyset$
Language of an e-NFA

Define: If M is a DFA, the language of M (written $L(M)$) is the set of strings M accepts.

Define: M accepts x if $q_0 \in A$.

Define: $F : Q \times \Sigma^* \to Q$ given the state M ends in after processing x; it is given by

$F(q_x) = q$ and $F(q, x) := \delta(F(q, x), x)$.

Defn: N is an NFA, $L(N)$ is the set of strings N accepts.

Defn: N accepts x if there is an accept state q in $\hat{\delta}((q, x), \epsilon)$.

Defn: For an NFA, the extended transition $\hat{\delta}$.

$\hat{\delta} : Q \times \Sigma^* \to 2^Q$ tells us where N could reach on input x.

$\hat{\delta}(q, \epsilon) := \hat{\epsilon}(\{ q \})$

$\hat{\delta}(q, xa) := \hat{\delta}(\hat{\delta}(q, x), a)$

Defn: if S is a set of states,

$\hat{\epsilon}(S)$ is the set of states reachable from S with any path of ϵ-trans

(possibly transitioning).

"ϵ-closure of S"

$\hat{\delta}(q, \epsilon) := \hat{\epsilon}(\{ q \})$

$\hat{\delta}(q, xa) := \hat{\epsilon}(\bigcup_{q' \in \hat{\delta}(q, x)} \hat{\delta}(q', a))$
Removing non-determinism

Question: Are non-deterministic automata more powerful than deterministic automata?

Claim: For all NFA N there exists a DFA M with $L(M) = L(N)$.

Proof: Choose an arbitrary N. Let M be given as follows:

![Diagram of a DFA and an NFA]