Last time:

- Defn: a T-valued random variable X is a function $X : S \rightarrow T$
 - we usually work with \mathbb{R}-valued random variables
- Defn: if X is a random variable and $x \in T$ then $(X = x)$ is the event
 $$(X = x) := \{s \in S \mid X(s) = x\} \quad \text{sim.} \quad (X > x) := \{s \in S \mid X(s) > x\}, \ldots$$
- Defn: The probability mass function of X is $\text{PMF}_X : T \rightarrow \mathbb{R}$ given by
 $$\text{PMF}_X(x) := \Pr(X = x)$$
- Defn: If X and Y are RVs then $X + Y$ is the RV given by
 $$(X + Y)(s) := X(s) + Y(s) \quad \text{sim.} \quad (XY)(s) := X(s)Y(s)$$

No announcements today
- If \(c \in \mathbb{R} \) then there is a corresponding RV \(C : S \to \mathbb{R} \) with \(C(s) := c \)
 - We'll usually use \(c \) for both \(c \) and \(C \)
- The joint PMF of \(X \) and \(Y \) gives \(\text{PMF}_{X,Y}(x,y) := Pr((X = x) \cap (Y = y)) \)
- Defn: the expected value (or expectation) of a random variable \(X \) is
 \[
 E(X) := \sum_{s \in S} X(s)Pr(\{s\})
 \]
- Alternate defn:
 \[
 E(X) := \sum_{x \in \mathbb{R}} xPr(X = x)
 \]
- Claim: \(E(X + Y) = E(X) + E(Y) \) \(\{\text{linearity of expectation}\} \)
- Claim: if \(c \in \mathbb{R} \) then \(E(cX) = cE(X) \)
- Warning! \(E(XY) \) may not be \(E(X)E(Y) \) (later: it will be if \(X, Y \) independent)
- Defn: If \(A \subseteq S \) is an event, then the indicator variable of \(A \) is \(I_A : S \to \mathbb{R} \) given by
 \[
 I_A(s) := \begin{cases}
 1 & \text{if } s \in A \\
 0 & \text{otherwise}
 \end{cases}
 \]