Induction

To prove \(\forall n \in \mathbb{N}, P(n) \):

- Prove \(P(0) \), and
- Prove \(P(n+1) \), assuming \(P(n) \) (for an arbitrary \(n > 0 \))

Claim: every natural number \(n \geq 2 \) can be written as a product of one or more primes

- Defn: \(n \) is composite if \(n = k \cdot \ell \) for some natural numbers \(k \geq 2 \) and \(\ell \geq 2 \).
- Defn: \(n \) is prime if it is not composite

Proof by induction.

Let \(P(n) \) be the statement

\[
\text{\(n \) can be written as a product of primes.}
\]

Base case: \(P(2) \) states \(2 \) can be written as a product of one or more primes.

\[2 = 2 \quad \text{let} \quad p_1 = 2, \text{note} \quad 2 \text{ is prime.} \]

Inductive step: Assume \(P(n) \) holds for some \(n \in \mathbb{N} \).

If \(n+1 \) is prime, we're done.

\[\text{let} \quad p_1 = n+1, \quad p_1 \text{ is prime, } n+1 = p_1. \]

If \(n+1 \) is not prime,

\[n+1 = k \cdot l \quad \text{for some } k \geq 2 \text{ and } l \geq 2. \]

Like: by \(P(k) \), \(k = p_1 \cdot p_2 \cdots p_i \), \(i < m \).

Then \[n+1 = k \cdot l = p_1 \cdot p_2 \cdots p_i \cdot q_1 \cdot q_2 \cdots q_j \]

all primes.
Strong induction

To prove \(\forall n \in \mathbb{N}, P(n) \) by strong induction:
- prove \(P(0) \)
- prove \(P(n+1) \), assuming \(P(n), P(n-1), \ldots, P(0) \).

Claim: \(\forall n \geq 2, \ n = p_1 \cdot p_2 \cdot \ldots \cdot p_k \) for some sequence of primes \(p_i \).

i.e., \(n \) can be written as a product of primes.

Proof by induction:

let \(P(n) : = \forall k \leq n \text{ if } k \geq 2. Q(k) \)

\(P(2) \): same as before, only be with \(2 \leq k \leq 2 \) is 2.

\(P(n+1) \) assuming \(P(n) \): WTS \(\forall k \leq n+1, Q(k) \)

by \(P(n) \) if \(k \leq n \), then we know \(Q(k) \).

So only need to consider \(k = n+1 \). (same as before)
Euclidean division

want to divide a by b.

$$\frac{a}{b} = q + \frac{r}{b}$$

avoid using $\frac{a}{b}$ notation.

$a = qb + r$

is the relationship between

num. denon. quotient, remainder

num. quot. den rem.

$0 \leq r < b.$
Euclidean division

Claim: For all a and all $b > 0$, there exists q and r satisfying
1. $a = qb + r$, and
2. $0 \leq r < b$

Proof:

By induction on a.

Let $P(a) := \forall b > 0, \exists q, r \text{ s.t. } a = qb + r$.

We'll show $P(0)$ and $P(a+1)$ assuming $P(n)$.

$P(0)$

Let $b > 0$, $\exists q, r \text{ s.t. } 0 = qb + r$

$s.t.$ $0 \leq r < b$.

Let $q = r = 0$ then indeed, $0 = qb + r$

$= 0b + 0 = 0 \checkmark$

$P(a+1)$ assuming $P(n)$

Know: $\exists q', r'$ with $a = q'b + r'$ \hspace{1cm} (P(n))

Want: $\exists q, r$ with $a + 1 = qb + r$ \hspace{1cm} (P(a+1))