Last time:

Markov’s ineq.: \[Pr\left(X \geq a\right) \leq \frac{E(X)}{a} \] if \(X \geq 0 \)

Chebychev’s ineq.: \[Pr\left(|X - E(X)| \geq a\right) \leq \frac{Var(X)}{a^2} \] (always)

Weak law of lg. #s: \[Pr\left(\left|\frac{X_1 + \cdots + X_n}{n} - \mu\right| \geq a\right) \leq \frac{\sigma^2}{na^2} \] if \(X_i \) indep. and \(E(X_i) = \mu, Var(X_i) = \sigma^2 \)

Announcements:

- TA applications open
Defn: a T-valued RV is a function from S to T

For our examples today:

- We are putting names (strings) in buckets from 1 to m
- $X := \{Alice, Andrew, Jehron, JiHun, \ldots \}$
- $Y := \{1, \ldots, 26\}$ is the set of buckets (more generally $\{1, \ldots, m\}$)
- S is the sample space.

Defn: a family of hash functions H is a $[X \to Y]$-valued RV

- i.e. a function $H : S \to [X \to Y]$
- in the context of hashing, outcomes are referred to as seeds
- the outputs of H (i.e. functions $h : X \to Y$) are called hash functions

H gives a separate Y-valued RV H_x for each $x \in X$

- $H_x : S \to Y$ is given by $H_x(s) := (H(s))(x)$

H is nice if

1. For any x and y, $Pr(H_x = y) = \frac{1}{|Y|}$.
2. For any $x_1 \neq x_2$, H_{x_1} and H_{x_2} are independent.