Last time:

- Induction: to prove $\forall n \in \mathbb{N}, P(n)$: prove $P(0)$
 and prove $P(n)$ for an arbitrary $n > 0$, assuming $P(n - 1)$.

- Variant: to prove \forall natural numbers $n \geq a, P(n)$: prove $P(a)$
 and prove $P(n)$ for an arbitrary $n > a$, assuming $P(n - 1)$.

- Variant: to prove $\forall n \in \mathbb{N}, P(n)$: prove $P(0)$
 and prove $P(n + 1)$ for an arbitrary $n \geq 0$, assuming $P(n)$.

Claim: $\forall n \geq 2$, there exists ℓ and primes a_1, a_2, \ldots, a_ℓ with $n = a_1 \cdot a_2 \cdots a_\ell$

Proof so far: let $P(n)$ be the statement “there exists ℓ and primes a_1, a_2, \ldots, a_ℓ with $n = a_1 \cdot a_2 \cdots a_\ell$.” We will prove $\forall n \geq 2, P(n)$ by induction. We must show $P(2)$ and $P(n)$ assuming $P(n - 1)$.

To see $P(2)$, choose $\ell = 1$ and $a_1 = 2$. Note that a_1 is prime and $n = a_1$.

Now, choose an arbitrary $n \geq 2$, and assume $P(n - 1)$; we want to show $P(n)$, i.e. that n has a prime factorization.
Claim: \(\forall n \geq 2, \text{ there exists } \ell \text{ and primes } a_1, a_2, \ldots, a_\ell \text{ with } n = a_1 \cdot a_2 \cdots a_\ell \)

Claim: \(\forall n \geq 2, \text{ there exists } \ell \text{ and primes } a_1, a_2, \ldots, a_\ell \text{ with } n = \prod_i a_i \) (new notn)

Claim: \(\forall n \geq 2, \text{ there exists primes } (a)_i \text{ with } n = \prod_i a_i \) (new notn)

Weak induction: to prove \(\forall n \in \mathbb{N}, P(n) \): prove \(P(0) \) and prove \(P(n) \) for an arbitrary \(n > 0 \), assuming \(P(n-1) \).

Strong induction: to prove \(\forall n \in \mathbb{N}, P(n) \): prove \(P(0) \) and prove \(P(n) \) for an arbitrary \(n > 0 \), assuming \(P(n-1), P(n-2), \ldots, P(0) \).

(equiv) prove \(P(n) \) for an arbitrary \(n > 0 \), assuming \(\forall k < n, P(k) \).

Claim’: \(\forall n \geq 2, \forall k \leq n, \text{ there exists primes } (a)_i \text{ with } k = \prod_i a_i \)

Can prove claim’ by weak induction, same as proving orig. claim by strong

Claim (Euclidean division): For every \(a \in \mathbb{N}, b \geq 1 \) there exists \(q, r \) with \(a = qb + r \) and \(0 \leq r < b \).

\(q \) is called the quotient, \(r \) is the remainder

Uniqueness proof required to say “the” quotient or remainder