Lecture 26: NFA-recognizable = DFA-recognizable

- We show that NFA-recognizable languages are DFA-recognizable and vice versa.
- We introduce ε-NFA, which also add no new power.

Applications

- This is an example of adding "language features" by "compiling" them to the basic language.
- Although NFA are not more powerful than DFA, for more general computations the question of whether nondeterminism can be removed is open (e.g., factoring is easy to solve non-deterministically).
Claim: \(L \) is DFA-recognizable iff \(L \) is NFA-recognizable.

Proof:

(\(\Rightarrow \)) \(\text{wfs of } L \text{ is DFA-recognizable} \implies L \text{ is NFA-recognizable.} \)

Let \(M \) be a DFA that recognizes \(L \). Well, \(M \) is also an NFA, so \(L \) is NFA-recognizable.

(\(\Leftarrow \)) \(\text{wfs of } L \text{ is NFA-recognizable} \Rightarrow L \text{ is DFA-recognizable.} \)

Assume \(\exists \) an NFA \(N \) with \(L = L(N) \).

We want to build a DFA \(M \) with \(L(M) = L(N) \).

Idea: Each state of \(M \) will represent a set of states of \(N \).
Let \(Q = 2^Q \), \(\Sigma = \Sigma \), \(Q^* = Q \)
\[\delta : Q^* \times \Sigma \to Q \]
\[\delta : 2^Q \times \Sigma \to 2^Q \]
\[\delta(M, x) = S \]
\[\delta(N, x, y) = S \]
\[\delta(M, x) = \delta(N, x, y) \]
\[\delta(M, x) = \delta(N, x, y) \]

Proof of subclaim:

By induction on \(x \), let \(P(x) \):

\[P(x) \] is defined as:

For \(P(x) \), assume \(P(x) \), plug in \(\hat{\delta}_M, \hat{\delta}_N, \delta_M, \delta_N \), \(\delta_M, \delta_N \).

Well:

\[\hat{\delta}_M(q_0, x) = \delta_M(\hat{\delta}_M(q_0, x), a) \]
\[= \delta_M(\hat{\delta}_N(q_0, x), a) \]
\[= \ldots \]

Claim: \(L(M) = L(N) \)

Subclaim (below):

Define of \(L(M) \)

Define of \(L(N) \)

Define of \(A_M \)

Define of \(A_N \)
Definition: An ε-NFA N is like an NFA, but we allow "ε-transitions".

can follow ε-transitions for free (without processing any characters).