Deterministic Finite Automata (DFA)

Formally, a DFA M has:

- A (finite) set of states Q.
 $Q = \{ q_0, q_1, q_2 \}$

- An alphabet Σ.

- A transition function $\delta : Q \times \Sigma \rightarrow Q$
 Ex: $\delta(q_0, a) = q_1$
 $\delta(q_0, b) = q_0$

- A start state $q_0 \in Q$
 Ex: $q_0 = q_0$

- A set of accepting states $A \subseteq Q$
 Ex: $A = \{ q_1, q_2 \}$

$E = \{0, 1\}$

$M = (Q, \Sigma, \delta, q_0, A)$

Input $x = 100110$.

$(start) q_0 \xrightarrow{(1)} q_1 \xrightarrow{(0)} q_0 \xrightarrow{(1)} q_1 \xrightarrow{(1)} q_0 \xrightarrow{(1)} q_1 \xrightarrow{(0)} q_0 \xrightarrow{(1)} q_0$

Does x accept?

$x = 100110$

A: No, we end in q_0, not an accept state.

Q: What strings does M accept?

A: Strings with an odd #s.
Exercise: Build an DFA M that recognizes the language $L = \{ x \mid x \text{ does not contain } 010 \text{ as a substring} \}$

$L = \{ 0, \epsilon, 11, 01, 001, 010, \ldots \}$

$Q = \{ q_0, q_1, q_2, \text{reject} \}$

$\Sigma = \{ 0, 1 \}$

$\delta : (q_i, a) \rightarrow q_j$

$q_0 : q_0$

$A : \{ q_0, q_1, q_2 \}$

$\delta(q_0, a) = \begin{cases} q_1 & a = 1 \\ q_2 & a = 0 \\ \text{reject} & \text{otherwise} \end{cases}$

$q_1 : \begin{cases} q_1 & a = 1 \\ \text{reject} & a = 0 \end{cases}$

$q_2 : \begin{cases} q_1 & a = 0 \\ q_2 & a = 1 \\ \text{reject} & a = \text{otherwise} \end{cases}$

$q_0 : x \text{ doesn't end with } 0 \text{ or } 01$

$q_1 : x \text{ ends with } 0$

$q_2 : x \text{ ends with } 01$

$\text{Reject: } x \text{ does contain } 010$
Formal definitions

Defn: A deterministic finite automaton (or DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, A)$ where:

- Q is a finite set (elements $q \in Q$ are called states)
- Σ is a finite set (elements $a \in \Sigma$ are called characters)
- $\delta : Q \times \Sigma \rightarrow Q$ is called the transition function
- $q_0 \in Q$ is called the start state
- $A \subseteq Q$ is the set of accepting states

Defn: δ tells us where M ends up after processing a string.

$$\hat{\delta} : Q \times \Sigma^* \rightarrow Q$$

is given by

$$\hat{\delta}(q, \epsilon) := q.$$

$$\hat{\delta}(q, ax) := \hat{\delta}(\hat{\delta}(q, x), a) \text{ (using } \hat{\delta}(q, x))$$

$\hat{\delta}$ called "extended transition function".

Defn: We say M accepts x if

$$\hat{\delta}(q_0, x) \in A.$$

Defn: The language of M (written $L(M)$) is

$$L(M) = \{ x \in \Sigma^* | M \text{ accepts } x \} = \{ x \in \Sigma^* | \hat{\delta}(q_0, x) \in A \}.$$

Defn: A language is a subset of Σ^*.

Defn: If L is a language, and $L = L(M)$, then we say M "recognizes" L.

Defn: If $\exists M$ with $L(M) = L$, we say L is DFA-recognizable.