Last time:
- RSA algorithm
 - Choosing public key
 - Encryption and decryption
 - Fast exponentiation
 - Assumption: factoring is computationally hard

Announcements:
- Exam grades out; regrade requests due Monday
- Course grade estimates soon
- Discussion sessions open to all
Inductively defined set / BNF notation: \(x \in X ::= \cdots \mid \cdots x \cdots \mid \cdots x_1 \cdots x_2 \cdots \) means elements of \(X \) are formed by applying rules 1, 2, and 3 a finite number of times (replacing \(x \)s with elements of \(X \) already formed)

Examples:

- **Strings**: \(x \in \Sigma^* ::= \varepsilon \mid xa \quad a \in \Sigma \)
- **Naturals**: \(n \in \mathbb{N} ::= Z \mid S \ n \) (Note: \(S \) stands for “successor”)
- **Expressions**: \(e \in \text{Expr} ::= n \mid e_1 + e_2 \mid \text{if } e_1 = 0 \text{ then } e_2 \text{ else } e_3 \quad n \in \mathbb{N} \)

To define \(f : X \to Y \) where \(X \) is inductively defined, define \(f(x) \) for \(x \)s formed using each rule; you may apply \(f \) to any substructure of \(x \)

- **Strings**: define \(f(\varepsilon) \) and \(f(xa) \) (in terms of \(f(x) \))
- **Expressions**: define \(f(n) \), \(f(e_1 + e_2) \) in terms of \(f(e_1) \) and \(f(e_2) \), and \(f(\text{if } e_1 = 0 \text{ then } e_2 \text{ else } e_3) \) in terms of \(f(e_1) \), \(f(e_2) \), and \(f(e_3) \)

To prove \(\forall x \in X, P(x) \) by structural induction, prove \(P(x) \) for \(x \)s formed using each rule, assuming \(P \) of each substructure of \(x \)

- **Strings**: prove \(P(\varepsilon) \) and \(P(xa) \) assuming \(P(x) \)
- **Expressions**: prove \(P(n) \), \(P(e_1 + e_2) \) assuming \(P(e_1) \) and \(P(e_2) \), and \(P(\text{if } e_1 = 0 \text{ then } e_2 \text{ else } e_3) \) assuming \(P(e_1) \), \(P(e_2) \), and \(P(e_3) \)