Lecture 15: base b, divisibility, gcd

Defn: A base b digit d is just a number d with $0 \leq d < b$

Defn: $(d)_b := \sum_{i \geq 0} d_i b^i = d_0 b^0 + d_1 b + d_2 b^2 + \cdots + d_i b^i$

Claim: For all $a \in \mathbb{N}$, and any $b \geq 2$, there exists base b digits $(d_i)_b$ such that $a = (d)_b$.

Proof: By induction on a. Let $P(a)$ be the statement "a is a base b number." We will show $P(0)$ and $P(a)$, assuming $P(a - 1)$.

Idea: let's build one digit, do rest inductively.

\[
\text{rem}(a, b) = \text{last digit (least place)}
\]

\[
\text{rem}(a, 10) = 3
\]

\[
\text{quot}(a, 10) = 125
\]

\[
\text{digits of quot}(a, b) = \text{rest} + \text{the digits}
\]

P(0): Was a sequence of digits W with $(d_i)_b = 0$

\[
\text{let } d_0 = 0 \text{ then } (d_0)_b = \sum_{i=0}^\infty d_i b^i = 0.
\]

Alt: $d_0 = 0, d_1 = 0$ then $(00)_b = 0 \cdot b + 0 \cdot 1 = 0$

Alt: let (d_i) be the empty sequence

\[
\text{convention: } \emptyset \text{ anything } = 0
\]

P(a): Assume $P(a - 1), P(a - 2), \ldots, P(0)$

\[
\text{let } d_0 = \text{rem}(a, b)
\]

\[
\text{let } d_1, \ldots, d_i = \text{digits of quot}(a, b).
\]

\[
\text{exit because quot}(a, b) < a
\]

\[
\text{so we have } P(\text{quot}(a, b))
\]

Let $q = \text{quot}(a, b), r = \text{rem}(a, b)$

By $P(q)$, know $\exists (d_i')$ with $(d_i')_b = q$

\[
\text{let } d_1 = d_0', d_2 = d_1', \ldots
\]

\[
d_i+1 = d_i'
\]

then $a = qb + r$ (defn of a, b, r

\[
= qb + d_0 \cdot b^0
\]

\[
= b (d_0')_b + d_0 \cdot b^0 \quad \text{(defn of } d_i')
\]

\[
= (b \sum_{i=0}^\infty d_i' b^i) + d_0 b^0 \quad \text{(defn of base } b)
\]

\[
= \sum_{i=0}^\infty d_i \cdot b^i + d_0 b^0 \quad \text{defn of } a
\]

\[
= \sum_{i=0}^\infty d_i \cdot b^i + d_0 b^0 = \sum_{i=0}^\infty d_i b^i = (d_i)_b.
\]
Working with base b representations

Claim (base b representation is unique): If $(d_i)_b = (d'_i)_b$ and neither d_i nor d'_i start with a zero, then $(d_i) = (d'_i)$.

Proof sketch: By induction on the length of (d_i); use uniqueness of quotient and remainder

Claims: Your familiar digit-by-digit algorithms for working in base 10 (e.g. long addition, subtraction, multiplication, division) also work in base b

Proofs: Later, when we have better tools for working with strings

\[
\begin{align*}
26 &= 3 \cdot 7 + 5 \\
9 &= 1 \cdot 7 + 2 \\
35 &= 5 \cdot 7 + 0
\end{align*}
\]
Divisibility

Defn: If \(a, b \in \mathbb{N} \) then we say “\(a \) divides \(b \)” (evenly) if

A. \(b/a \) is defined
B. \(\exists k \in \mathbb{N} \) such that \(ab = k \)
C. \(\exists k \in \mathbb{N} \) such that \(ka = b \)
D. \(\exists k \in \mathbb{N} \) such that \(a = kb \)
E. Unsure/other

Notation: “\(a \mid b \)” is shorthand for “\(a \) divides \(b \)”

3 divide 6? ✓ yes
6 divide 3? no
Let $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be given by:

$$g(a, b) = a \cdot b$$

where $g(1, b) = \text{gcd}(1, b)$ is the greatest common divisor. Euclid's algorithm is defined inductively by:

$$a = bq + r$$

where $r < b$. So, $r \leq b$ eventually. So we can use the inductive rule:

$$g(a, b) = g(b, r)$$

and g is a valid function.
GCD is a common divisor

Defn: \(a \mid b \) means there exists \(k \) such that \(ka = b \) if \(b > 0 \)

Defn: \(g(a, 0) := a \), and \(g(a, b) := g(b, r) \) where \(r = \text{rem}(a, b) \) (so \(a = qb + r \))

Claim: For all \(a \in \mathbb{N}, b \in \mathbb{N} \), \(g(a, b) \mid a \) and \(g(a, b) \mid b \)

Proof: Claim is the same as \(\forall b \in \mathbb{N}, g(a, b) \mid a \) and \(g(a, b) \mid b \)

we'll prove this by induction on \(b \). Let \(P(b) := \)

\(P(0) := \forall a \in \mathbb{N}, g(a, 0) \mid a \) and \(g(a, 0) \mid 0 \).

well \(g(a, 0) = a \) by defn.

\(a \mid a \) because \(1 \cdot a = a \)

\(a \mid 0 \) because \(0 \cdot a = 0 \)

\(P(b) \), assuming \(P(b-1), ..., P(0) \):

\(\forall a \in \mathbb{N}, g(a, b) \mid a \) and \(g(a, b) \mid b \)

know \(g(a, b) := g(b, r) \), and \(P(r) \) tells:

\(g(b, r) \mid b \) and \(g(b, r) \mid r \).

... finish next time
GCD is the greatest common divisor

Defn: \(a \mid b \) means there exists \(k \) such that \(ka = b \)

Defn: \(g(a, 0) := a \), and \(g(a, b) := g(b, \text{rem}(a, b)) \) where \(r = \text{rem}(a, b) \) (so \(a = qb + r \))

Claim: For all \(a, b, c \in \mathbb{N} \), if \(c \mid a \) and \(c \mid b \) then \(c \leq g(a, b) \)

Proof: (next time (exercise))