Claim: \(A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \)

Proof: Choose arbitrary sets \(A, B, \) and \(C \). Let \(LHS := A \cup (B \cap C) \), and let \(RHS := (A \cup B) \cap (A \cup C) \).

We want to show that every \(x \in LHS \) is also in \(RHS \).

Choose an arbitrary \(x \in LHS \). Then either \(x \in A \) or \(x \in (B \cap C) \).

In the former case (when \(x \in A \)), we have \(x \in A \cup B \) by definition of union, and similarly \(x \in A \cup C \). Thus \(x \in RHS \).

In the latter case (when \(x \in (B \cap C) \)), we have \(x \in B \) and \(x \in C \). We can therefore conclude that \(x \in A \cup B \) and \(x \in A \cup C \), so \(x \in RHS \), as required.
A proposition is a (fully defined) statement that is either true or false
- E.g: it is raining outside, $3 < 7$, you will get an A in the class, $0 \in \mathbb{N}$

A predicate is a proposition with variables
- its truth depends on the value of the variables
- E.g: $P(x) := "x < 7"$ or $Q(x, y) := "x will get a y in the class"

If P and Q are propositions (or predicates) then so are:
- "P and Q" (written $P \land Q$)
- "P or Q" (written $P \lor Q$)
 - implicitly: “or both”
- "if P then Q" (written $P \implies Q$)
 - note that this is automatically true if P is false
 - there is not necessarily any other relationship between P and Q
- "P is false" (or “not P, written $\neg P$)
- “for all $x \in A$, $P(x)$” (written $\forall x \in A, P(x)$)
 - You can think of this as “$\forall x$, if $x \in A$ then $P(x)$”
- “there exists an $x \in A$ such that $P(x)$” (written $\exists x \in A, P(x)$)
 - “s.t.” is an abbrev. for “such that”
 - You can think of this as “$\exists x$ such that $x \in A$ and $P(x)$”

Prefer words to notation where possible
Proof outlines / proof techniques

<table>
<thead>
<tr>
<th>Proposition</th>
<th>To prove it</th>
<th>To use it</th>
<th>Logical negation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P and Q $(P \land Q)$</td>
<td>Prove both P and Q</td>
<td>Use either P or Q</td>
<td>P is false or Q is false</td>
</tr>
<tr>
<td>P or Q $(P \lor Q)$</td>
<td>Prove either P or Q</td>
<td>Prove R in the P and Q cases to conclude R (case analysis)</td>
<td>P is false and Q is false</td>
</tr>
<tr>
<td>if P then Q $(P \implies Q)$</td>
<td>Assume P and prove Q</td>
<td>If you know P, you can conclude Q</td>
<td></td>
</tr>
<tr>
<td>for all $x \in A$, $P(x)$ $(\forall x, P(x))$</td>
<td>Prove $P(y)$ for an arbitrary $y \in A$</td>
<td></td>
<td>There is some $x \in A$ for which P is false (counterexample)</td>
</tr>
<tr>
<td>there exists an $x \in A$ such that P $(\exists x, P)$</td>
<td>Give a specific $y \in A$ and prove $P(y)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P is false $(\neg P)$</td>
<td>Prove the logical negation of P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>