Lecture 14: Strong Induction

- Find & fix bug in proof of existence of prime factors

- New technique: strong induction
 - motivation
 - using str. ind.
 - it's not actually stronger

- Euclidean division

Applications:
- in 2800: lots
- elsewhere: analyzing "divide and conquer" algorithms, which can be much faster than others.
willing to accept proofs \(P(0) \)
\[P(n) \] assuming \(P(n-1) \).

- Can prove

\[\forall n \in \mathbb{N}, \text{if } n \geq 3 \text{ then } P(n) \].

\(P(0) \) "vacuously true" because \(0 \neq 3 \)

\(P(1) \) "vacuously true"

\(P(n) \), assuming \(P(n-1) \).

Choose \(n \in \mathbb{N} \). If \(n < 3 \) then "if \(n \geq 3 \) then \(P(n) \)" is vacuously true.

- If \(n = 3 \)
 - (proof of \(P(3) \), \(P(n-1) \) says nothing)

- If \(n > 3 \)
 - (proof of \(P(n) \), using \(P(n-1) \))
know \(n-1 \) has a prime factorization.

wrg: \(n \) has a prime factorization (case analysis)

1. if \(n \) is prime, then let \(\ell=1 \), let \(a_1=n \).
 then \(a_1 \) is prime, and \(n=a_1 \).

2. if \(n \) is composite (i.e. \(n=x \cdot y \) for some \(x,y \in \mathbb{N} \))

 can't factorize

 \[x \equiv 1 \pmod{2} \] because we can only factorize \(n-1 \).

\[P(2): \text{2 is prime } \checkmark \]

\[P(3): \text{3 is prime } \checkmark \]

\[P(4): 4 = 2 \cdot 2 \]

\[P(11): \]

\[P(12): 12 = 3 \cdot 4 \]
Claim: \(\forall n \geq 2 \exists \text{ primes } (\alpha)_i \text{ with } n = \prod a_i \)

Proof: We'll prove this using strong induction. Let \(P(n) \) be the statement that we will show \(P(2) \), and \(P(n) \) assuming \(P(k) \) holds for \(2 \leq k < n \).

\(P(2) \): Same as before.

\(P(n) \): Assume \(P(k) \) for \(2 \leq k < n \).

We show \(P(n) \), i.e., \(n \) has a prime factorization.

- If \(n \) is prime, let \(a_i = n \).
- If \(n \) is composite, \(n = x \cdot y \) for some \(x, y > 2 \). Note \(x < n \) and \(y < n \).
- Otherwise, \(n = x \cdot y > n \).

By \(P(x) \), \(\exists \text{ primes } (\alpha)_i \text{ with } x = \prod a_i \).

By \(P(y) \), \(\exists \text{ primes } (\beta)_i \text{ with } y = \prod b_i \).

Then \(n = x \cdot y = \left(\prod a_i \right) \left(\prod b_i \right) = \prod (\alpha_i \beta_i) \).

Let \((\alpha)_i \) be \((\alpha)_i \) followed by \((\beta)_i \).
WTS: \(\forall n \geq 2, \forall 1 \leq k \leq n, \text{ } k \text{ has a prime factorization} \)

Prove by weak induction. Let \(Q(n) \):

\(Q(2) \): \(\forall 2 \leq k \leq 2, \text{ } k \text{ has prime factorization} \)

prove \(P(2) \)

\(Q(n) \): Assume \(\forall 2 \leq k \leq n-1, \text{ } k \text{ has factorization} \)

WTS \(\forall 2 \leq k \leq n, \text{ } k \text{ has factors} \)

need to show \(n \) has factors
\[
\frac{a}{b} \text{ might not be } \in \mathbb{Z}. \text{ Avoid division!}
\]

like to divide with remainder.

Claim: \(\forall a \in \mathbb{N}, b \geq 1, \exists q, r \text{ with } a = qb + r \)

with \(0 \leq r < b \).

(Euclidean division algorithm)

Proof: we WTS \(\forall a \in \mathbb{N}, b \geq 1, \exists q, r \text{ as above} \).

we'll prove this by \textit{pm}. Let \(P(a) = \exists q, r \text{ as above} \).

let \(P(b) = \exists q, r \text{ as above} \).

we WTS \(P(0) \) and \(P(n) \) assuming \(P(n) \).

\(P(0) \): WTS \(\forall b \geq 1, \exists q, r \) with \(0 = qb + r \) and \(0 \leq r < b \).

choose \(q = 0 \) \(r = 0 \).

Then \(qb + r = 0b + 0 = 0 = a \).

\(P(a) \): assume \(P(a-1) \).

choose \(q \) \(b \geq 1 \).

then by \(P(a-1) \), \(\exists q', r' \) with \(a-1 = q'b + r' \).

WTS \(\exists q, r \) with \(a = qb + r \) and \(0 \leq r < b \).

let \(q = q' \) \(r = r' + 1 \)

then \((a-1)+1 = q'b + r' + 1 \) \(0 \leq r' < b \)

\[
= qb + r
\]

need \(0 \leq r < b \)

i.e. \(0 \leq r' + 1 \).

if \(r' < b-1 \), let \(q = q' \) \(r = r' + 1 \)

\[
\text{ know: } a-1 = q'b + r' \quad r' = b-1
\]

want: \(a = qb + r \)

\[
\text{ try: } a-1 = b-4 \quad \text{ if } r = b-1 \text{ let } q = r = \quad 2
\]

know: \(a-1 = q'b + r' \quad r' = b-1 \)