Lecture 9: Countability

- Defn: Countable, uncountable
- Rational #s (\mathbb{Q}) is countable
- Real #s (\mathbb{R}) is uncountable (there are more reals than rationals)

Applications

Why is "digital" so important?
- What does "digital" mean, anyway?
Def. A set X is **countable** if $|X| \leq |\mathbb{N}|$ (equivalently, if $|\mathbb{N}| \geq |X|$)

\[X = \{ x_0, x_1, x_2, \ldots \} \]

$f : \mathbb{N} \to X$

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x_0</td>
</tr>
<tr>
<td>1</td>
<td>x_1</td>
</tr>
<tr>
<td>2</td>
<td>x_2</td>
</tr>
<tr>
<td>3</td>
<td>x_3</td>
</tr>
<tr>
<td>4</td>
<td>x_4</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

every elt of X gets hit by this fn (surj).

$\sqrt{\text{\textbf{N is countable}}} \quad \sqrt{\text{\textbf{N u \{-1\} is ctbl}}} \quad \sqrt{\text{\textbf{Z is ctbl}}} \quad \sqrt{\text{\textbf{Q (the set of rational is \{\frac{p}{q} | p, q \in \mathbb{Z}, q \neq 0\}) is ctbl}}} \quad \sqrt{\text{\textbf{\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \ldots is ctbl}}}$
Claim: \(\mathbb{Q} \) is countable

Claim*: \(\mathbb{Q}^+ \) is countable, where \(\mathbb{Q}^+ = \{ x \in \mathbb{Q} \mid x > 0 \} \) is countable.

Proof: WTS \(|\mathbb{Q}| \leq |\mathbb{N}| \) or \(|\mathbb{N}| \geq |\mathbb{Q}| \),

i.e. \(\exists \) a surj \(f: \mathbb{N} \rightarrow \mathbb{Q} \)

let \(f: \mathbb{N} \rightarrow \mathbb{Q} \) be given by

\[f(n) = \frac{n}{2} \]

not surjective! "hit" \(\frac{1}{2} \).

\[f(n) = \begin{cases} \frac{1}{n} & \text{if } n > 0 \\ 0 & \text{if } n = 0 \end{cases} \]

Also not surjective.

Idea: to compute \(f(n) \), we'll traverse the table of rationals as shown, \(n \) steps, then \(f(n) \) is the resulting fraction.

\(f \) is surjective, because every elt of \(\mathbb{Q}^+ \) is in the table at least once, every position in the table gets "hit" by \(f \).
Claim: \(\mathbb{R} \) (the set of real \(\mathbb{R} \)) is not countable.

Proof: WTS \(|\mathbb{N}| \neq |\mathbb{R}| \), i.e. \(\not\exists \) a surjection \(f: \mathbb{N} \to \mathbb{R} \). For the sake of contradiction, assume \(\exists \) a surjection \(f: \mathbb{N} \to \mathbb{R} \).

For example, \(f \) might look like:

\[
\begin{array}{c|c}
 n & f(n) \\
\hline
 0 & 0.000000 \\
 1 & 3.141592 \\
 2 & 0.399288 \\
 \vdots & \vdots \\
 i & \vdots \\
\end{array}
\]

Let \(\chi_0 \) be the \(\text{symbolic} \) of \(\chi \), then \(\chi \neq f(\chi) \) why?

To get \(\chi \)th digit of \(\chi \), add 5 (wrap around) to i\text{th} digit of \(f(i) \).

I claim: \(\chi \) cannot be \(f(k) \) for any \(k \), because \(\chi \) and \(f(k) \) differ in the \(k \)th digit. So

\[
|\chi - f(k)| > 0.000000 \ldots k\text{ zeros.}
\]

This contradicts the fact that \(f \) is surjective, so there cannot be a surj. \(f: \mathbb{N} \to \mathbb{R} \), so \(|\mathbb{N}| \neq |\mathbb{R}| \).