Last time:

- A function f from a set A to a set B is a rule that, for every input $x \in A$ gives an unambiguous output $f(x) \in B$
- Notation: $f : A \rightarrow B$ means “f is a function from A to B”
- To give a function, make sure domain, codomain, and rule are all clear
- Defn: Two functions f and $g : A \rightarrow B$ are equal if, for all $x \in A$, $f(x) = g(x)$

Announcements:

- None today
To give a function, make sure domain, codomain, and rule are all clear.

Defn: Two functions f and $g : A \to B$ are *equal* if, for all $x \in A$, $f(x) = g(x)$.

Defn: $f : A \to B$ is *injective* if $\forall x_1, x_2 \in A$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Defn: $f : A \to B$ is *surjective* if $\forall y \in B$, $\exists x \in A$, $f(x) = y$.

Defn: f is bijective if it is both injective and surjective.

Defn: if $f : B \to C$ and $g : A \to B$ then $f \circ g : A \to C$ is given by $(f \circ g)(x) := f(g(x))$.

Defn: for any A, $id_A : A \to A$ is given by $id_A(x) := x$.

Defn: if $f \circ g = id$ then f is a left-inverse of g and g is a right-inverse of f.

Defn: g is a *two-sided inverse* of f if it is both a left- and right-inverse of f.

we write $g = f^{-1}$; need to check that it is unique.

Claim: f is injective if and only if it has a left-inverse.

Claim: f is surjective if and only if it has a right-inverse.

Claim: f is bijective if and only if it has a two-sided inverse.