Lecture 11: relations

- relations are like tables of data
- we'll give def's, examples
- properties of rel's
- equivalence classes

Applications

- relations are central to the theory of database systems
- Many important algorithms (e.g. page rank) operate on relations
Def.: A relation R on sets A, B, C, \ldots is a subset of $A \times B \times C \times \ldots$

Def.: A binary rela. R on a set A is a subset of $A \times A$

Ex.: equality, "$\leq", "\geq$"

Ex.: isFriend is a relation on the set of people. isSaying, ... R

$\left((1, 2) \in \"\leq\" \right)$ $\left(1 \leq 2 \right)$

$\text{(Alice, Bob)} \in \text{Friends}$ Alex is a friend of Bob

Notation: if R is a bin. rela. on A, and $x, y \in A$ then "$x R y$" means $(x, y) \in R$

Notation: I usually use "R^n" or "$\cdot \cdot \cdot \cdot \cdot \cdot ^{\ldots}$" to represent rela.'s.

\[F : A \rightarrow B \]

\[R \text{ on set } A \]

\[a \rightarrow 1 \]
\[b \rightarrow 2 \]
\[c \rightarrow 3 \]

\[a R b, b R a \]
\[c R b \]

\[\text{Set } = \{ (ab), (b, a), (cb) \} \]

\[c \]

(Sometimes called a "directed graph")
Properties that relations can have:

- R is a relation on set A
 - R is reflexive if \(\forall x \in A, xRx \).

- R is symmetric if \(\forall x, y \in A, xRy \implies yRx \).

- R is transitive if \(\forall x, y, z \in A, xRy \land yRz \implies xRz \).

R is an equivalence relation if:
- R is reflexive, symmetric, and transitive.

≤ relation on \(\mathbb{N} \):
- Is \(\leq \) reflexive?
 - Yes, \(\forall x, x \leq x \)

- Is \(\leq \) symmetric?
 - No: example, \(1 \leq 2 \) but \(2 \not\leq 1 \).

- Is \(\leq \) transitive?
 - Yes, if \(a \leq b \) and \(b \leq c \), then \(a \leq c \).

- Is \(\leq \) an equivalence relation?

"a \rightarrow b" is symmetric
(Not sensible; symmetry is a property of \(R \), not \(\rightarrow \)).
R' is transitive closure of R. (Smallest extension of R that is transitive)

is transitive not reflexive.

you can have any combination of reflexive, symmetric, transitive.

$x = a, y = b, z = c$

xRy, yRz, xRz

$x = c, y = a, z = d$

$xRa, xRb, xRc, xRd.$

$x = b, y = d, z = b$

xRy, yRx, xRz

$bRb.$
Often redefine equality for new types of objects.

\[(\text{sets}) \quad A = B \quad \text{if} \quad \forall x \in A, x \in B \quad \text{and} \quad \forall x \in B, x \in A\]

\[(\text{funs}) \quad f = g \quad \text{if} \quad \forall x \in A, f(x) = g(x)\]

\[(\text{pairs}) \quad (a,b) = (c,d) \quad \text{if} \quad a = c, b = d.\]

Many prog. langs let you redefine `==`, `equals()`

--eq--

if you define equality, check that
your def is equivalence relation.

```cpp
if (a == b) {
    ...
}
```

```cpp
x = 17
```

```cpp
if (x == 17) {
    ...
}
```