1. **Combinatorics** [15 pts] Give a combinatoric proof that $3^n = \sum_{k=0}^{n} \binom{n}{k} 2^k$.

2. **Probability** [18 pts] Suppose Pr is a probability measure on a sample space S, and A is an event with $Pr(A) \neq 0$. We can define a new probability measure Q on S by the rule $Q(E) := Pr(E | A)$. Show that Q is a probability measure on S.

In this question, you may use facts about sets without proof, but not facts about probability measures (besides the definitions). For example, you may use the fact that $A = (A \setminus B) \cup (A \cap B)$, but not the fact that $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$.

3. **Automata** [22 pts] Complete the following proof:

Claim: the intersection of DFA-recognizable languages is DFA-recognizable.

Proof: Suppose L_1 and L_2 are DFA-recognizable languages. Then there exists automata $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, A_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, A_2)$ with $L(M_1) = L_1$ and $L(M_2) = L_2$. We want to build a new automata $M = (Q, \Sigma, \delta, q_0, A)$ that simulates both M_1 and M_2. We do this by making the states of M pairs of states (one from M_1 and one from M_2).

(a) [3 pts] For example, if M_1 and M_2 are given by

```
1 1
start A > 0, 0
B
```

then M would be given by the following diagram:

(b) [5 pts] Formally, we can define M in general as follows:

- $Q := $
- $q_0 := $
- $A := $
- $\delta := $ is given by $\delta() := $.

(c) [2 pts] Now, I claim that M does simulate M_1 and M_2. More formally, I claim that for all x, $\hat{\delta}(q_0, x) = $.

(d) [8 pts] Proof by induction on x:

(e) [4 pts] Finally, we use this to show that $L(M) = L(M_1) \cap L(M_2)$:
4. Modular numbers [15 pts]

Use Euler’s theorem and repeated squaring to efficiently compute $5^n \mod 21$ for $n = 5$, $n = 121$ and $n = 24010$.

Hint: you can solve this problem with six multiplications of one- or two-digit numbers (alternatively, you can use negative representatives to keep it to six single-digit multiplications). Please fully evaluate all expressions for this question (e.g. write 21 instead of $3 \cdot 7$).

5. Induction [15 pts] Suppose you are given a function $f : \mathbb{N} \to \mathbb{N}$, and are told that $f(1) = 1$ and for all n, $f(n) \leq 2f(\lfloor n/2 \rfloor) + 1$ (note: $\lfloor n \rfloor$ is the largest integer that is less than or equal to n).

Use induction to prove that for all $n \geq 2$, $f(n) \leq 2n \log_2 n$. Be sure to indicate where you are using your inductive hypothesis, and which inductive hypothesis you are using.

You may write log to indicate \log_2. Here are all of the facts about $\lfloor x \rfloor$ and $\log x$ that you will need:

- $\lfloor x \rfloor \leq x$
- $\log 1 = 0, \log 2 = 1$
- $\log(x/2) = \log x - 1$
- $\log(2^x) = x$
- $\log(x^2) = 2\log x$
- if $x \leq y$ then $\log x \leq \log y$

(a) [3 pts] Give a reasonable sample space for this problem.

For the remainder of the question, make sure that each random variable or event you use has a clear definition in terms of your sample space, and that each assertion is justified.

(b) [5 pts] What is the expected number of rolls that are less than or equal to 5?

Hint: use indicator variables.

(c) [5 pts] What is the variance of the number of rolls that are less than or equal to 5?

(d) [5 pts] Use Chebychev’s inequality to give an upper bound on the probability that all of the rolls are greater than 5.

7. Counting languages [18 pts] Let $\Sigma = \{0, 1\}$ and let Σ^{10} be the set of strings with ten characters. How many strings are in each of the following languages? Briefly justify.

(a) [4 pts] $\Sigma^{10} \cap L((01)^* + (10)^*)$

(b) [4 pts] $\Sigma^{10} \cap L((01 + 10)^*)$

(c) [4 pts] $\Sigma^{10} \cap L(01^* + \varepsilon 0^*)$

(d) [6 pts] $\{x \in \Sigma^{10} | x \text{ has more 0’s than 1’s}\}$
8. **Equivalence relations** [15 pts] Let \sim be the binary relation on $\mathbb{N} \times \mathbb{N}$ given by $(a,b) \sim (c,d)$ if $a + d = b + c$.

(a) [5 pts] Check that \sim is an equivalence relation.

(b) [5 pts] Let $f : (\mathbb{N} \times \mathbb{N})/\sim \to \mathbb{Z}$ be given by $f([(a,b)_{\sim}]) := 2a - 2b$. Show that f is well-defined.

(c) [5 pts] Show that f as given above is injective.

9. **Quantifiers and the pumping lemma** [14 pts] Recall that the pumping lemma states the following:

$$\forall L \subseteq \Sigma^*, \text{ if } L \text{ is regular then } \exists n \in \mathbb{N} \text{ such that }$$

$$\forall x \in L, \text{ if } \text{len}(x) \geq n \text{ then } \exists u, v, w \in \Sigma^* \text{ such that } x = uvw \text{ and } v \neq \varepsilon \text{ and } \text{len}(uv) \leq n \text{ and }$$

$$\forall k \in \mathbb{N}, uv^kw \in L$$

(a) [6 pts] Give a similarly carefully quantified statement describing what it would mean for the pumping lemma to be false. You may not use the word “not” or the symbols \neg, \exists, or \forall, but you may use other crossed out symbols like \neq or \notin.

(b) [4 pts] The following proof incorrectly uses the pumping lemma by using an inappropriate proof technique. Circle the first incorrect sentence and briefly explain why the technique does not apply.

Claim: $L := \{0^n1^m \mid n > m\}$ is not regular.

Proof:

- Assume L is regular
- Then there exists n as in the pumping lemma.
- Let $x = 0^n1^{n-1}$.
- By definition of L, $x \in L$, and clearly $\text{len}(x) \geq n$ so there exists u, v, w as in the pumping lemma.
- Let $u = \varepsilon$, $v = 0^n$, and $w = 1^{n-1}$.
- Clearly $x = uvw$, $v \neq \varepsilon$ and $\text{len}(uv) = n \leq n$.
- By the pumping lemma, $uv^kw \in L$.
- But $uv^kw = 1^n$ has fewer 0’s than 1’s, so is not in L.
- This is a contradiction, so our assumption that L was regular must be false.

(c) [4 pts] Explanation of error: