Claim: base b representation exists

- **Notn:** (d_i) is shorthand for $(d_i, d_{i-1}, \ldots, d_1, d_0)$
- **Defn:** A base b digit d is a natural number with $0 \leq d < b$
- **Defn:** The base-b interpretation of the digits (d_i) is
 \[
 (d_i)_b := \sum_{i=0}^{\infty} d_i b^i
 \]
- **Defn:** A base-b representation of $n \in \mathbb{N}$ is a sequence of digits (d_i) with $n = (d_i)_b$

Claim: For all $a \in \mathbb{N}$, and $b > 1$, there is a sequence (d_i) with $(d_i)_b = a$

Proof idea/question: We'll do an induction. When thinking inductively, you want to figure out how to make a little bit of progress to reduce the problem to a simpler problem. In this case, you're given a and b and want to find the digits of a. Is there any single digit of a that you can express in terms of a and b?

\[
a = (\ldots d_1 d_0, d_{i-1}, d_{i-2}, \ldots, d_2, d_1, d_0)_b
\]

- **use** $\text{quot}(a, b)$
- **exist by induction**
- **let** $d_j \ldots d_1 d_0$, be $d_{j-1}, d_{j-2}, \ldots, d_2, d_1, d_0$
- **let** $d_0 = \text{rem}(a, b)$
- **need to check** $(d_i)_b = a$
- **use** $a = q b + r$.
Divisors and divisibility

\(a \) "divides" \(b \) (evenly)

- \(\text{rem}(a, b) = 0 \) (equivalent, prove using def of uniqueness of \(\text{rem} \))
- \(\exists \, c \) such that \(a \cdot c = b \). \(\text{def} \) of \(a \) divides \(b \).

Notation: \(a \mid b \) means \(a \) divides \(b \).
Euclid's greatest common divisor algorithm

Defn: \(a \) divides \(b \) (written \(a \mid b \)) if there exists \(c \) with \(ac = b \).

Claim: Let \(g : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) be given as follows:

\[
\gcd(a, b) = \begin{cases}
 a & \text{if } b = 0 \\
 \gcd(b, r) & \text{if } b > 0
\end{cases}
\]

where \(r = \text{rem}(a, b) \), otherwise.

Then \(g(a, b) \) is the greatest common divisor of \(a \) and \(b \).

Proof (common divisor):

Proof by induction (on \(b \)).

Let \(P(b) \) be the statment:

\[
\text{WTS: } \forall a, b : \gcd(a, b) \mid a \text{ and } \gcd(a, b) \mid b.
\]

We'll prove \(P(a) \) and \(P(b) \) assuming \(P(b-1) \).

\(P(0) \):

\[
\text{WTS: } \forall a, g(a, 0) \mid a \text{ and } g(a, 0) \mid 0.
\]

Choose any \(a \). WTS: \(g(a, 0) \mid a \text{ and } g(a, 0) \mid 0 \).

Well, \(g(a, 0) = a \).\(a \mid a \) since \(a = a \).
\(a \mid 0 \) since \(a \cdot 0 = 0 \).

\(P(b) \):

\[
\forall a, g(a, b) \mid a \text{ and } g(a, b) \mid b, \text{ assume } P(b-1), P(b-2).
\]

Choose other \(a \). We know \(b > 0 \), so \(g(a, b) = g(b, r) \) where \(r = \text{rem}(a, b) \).

We know \(g(b, r) \mid b \) and \(g(b, r) \mid r \) by \(P(r) \) applied to \(a = b \).

So \(g(b, r) \mid b \) and \(g(b, r) \mid r \) (have assumed \(P(r) \) since \(r < b \)).

So \(g(a, b) \mid b \) and \(g(a, b) \mid r \).

WTS \(g(a, b) \mid a \) and \(g(a, b) \mid b \).

\(g(a, b) \) divides \(a \) if \(\frac{a}{g(a, b)} = b \).

Similarly, \(b \) divides \(a \) if \(\frac{b}{g(a, b)} = r \).

WTS \(a = g(a, b) \).

Also, by defn of \(r \), \(a = qb + r \).

So \(a = g(a, b) \).

\[
= g \cdot q + g \cdot r.
\]

\[
= (bc + d)g.
\]

Let \(e = gc + d \).

Then \(a = e \cdot g \)

So \(g \mid a \). \(\checkmark \)
Euclid's greatest common divisor algorithm

Defn: a divides b (written \(a \mid b \)) if there exists c with \(ac = b \)

Claim: Let \(g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) be given as follows:

\[
g(a, b) := \begin{cases}
 a, & \text{if } b = 0 \\
 g(b, r) \text{ where } r = \text{rem}(a, b), & \text{otherwise}
\end{cases}
\]

Then \(g(a, b) \) is the greatest common divisor of a and b.

Proof (greatest):

- In fact, we'll show that every other common divisor actually divides \(g \).

- i.e. \(\forall c \), if \(c \mid a \) and \(c \mid b \) then \(c \mid g \).

Proof by induction.

Let \(P(b) = \forall c \mid a \text{ and } c \mid b \text{ then } c \mid g \).

P(0): Assume \(c \mid a \) and \(c \mid 0 \). \(\forall c \), \(c \mid g(a, 0) \). \(\forall c \), \(g(a, 0) = a \). \(\forall c \), \(c \mid a \). But we assumed \(c \mid a \).

P(b): Assume \(c \mid a \) and \(c \mid b \). \(\forall c \), \(c \mid g(a, b) \). \(\forall c \), \(c \mid g(a, b) \). \(\forall c \), \(g(a, b) = g(b, r) \). \(\forall c \), \(c \mid g(b, r) \). If we could show \(c \mid b \) and \(c \mid r \), then \(\forall c \), \(c \mid g(b, r) \). So \(\forall c \), \(c \mid a \) and \(c \mid b \). \(\forall c \), \(c \mid b \) by assumption. \(\forall c \), \(c \mid a \).