Lecture 27: A (stronger?) computational model

Last time: DFA are limited

▶ They can’t even count!

Today: let’s make a more flexible/powerful kind of automaton, and see if they are more powerful

We’ll add two new features:

▶ “Angelic non-determinism”
▶ “Epsilon transitions”

Definitions to have handy for today: definition of a DFA, language of a DFA, \(\delta \) for DFA
“Angelic” non-determinism

Idea: Non-deterministic automata can have many options while processing. They “magically” choose the “correct” option (one that will lead them to an accepting state).

M accepts x if it is possible to process (all the characters of) x from the start state to reach an accepting state.

Does M accept 00? 01? 001? 0101? 101?
\(\varepsilon \)-transitions

Example: Draw an NFA that recognizes the language

\[
L := \{ x \mid x \text{ contains } 010 \text{ or } x \text{ has an odd number of } 1s \}
\]
Formal definition of an (ε-) NFA

Defn: A DFA M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, A)$:

- Q is the finite set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $A \subseteq Q$ is the set of accepting states

Defn: An NFA N is a 6-tuple $N = (Q, \Sigma, \delta, \varepsilon, q_0, A)$:

- Q is a finite set
- Σ is an alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$
- $\varepsilon : Q \rightarrow 2^Q$
- $q_0 \in Q$
- $A \subseteq Q$

\[\varepsilon(q_0) = \{ q_0, q_3 \} \]
\[\varepsilon(q_4) = \emptyset \]

Example:
- $Q = \{ q_0, q_1, \ldots, q_6 \}$
- $\varepsilon = \{ q_0, q_3 \}$
- $\delta(q_3, 0) = \{ q_3, q_4 \}$
- $\delta(q_4, 0) = \emptyset$
The language of an NFA

Definitions for DFA:
- \(L(M) \) is the set of strings that \(M \) accepts
- \(M \) accepts \(x \) if processing \(x \) brings \(M \) to an accept state
- \(\delta(q, x) \) gives the state that \(M \) ends in after processing \(x \)

Definitions for NFA:
- \(L(N) \) is the set of strings that \(N \) accepts
- \(N \) accepts \(x \) if it is possible for \(x \) to bring \(M \) to an accept state
 - \(\hat{\delta}(q, x) \) gives the set of states reachable from \(q \) on input \(x \)
 - \(\delta(S, x) \) gives the set of states reachable from \(S \) using 0 or more \(\epsilon \)-transitions

\[
\delta(q, x) = \bigcup \hat{\delta}(q', x) \\
\delta(q_0, x) = \hat{\delta}(q_0, x)
\]

\(\hat{\delta}(q_0, x) = \{ \hat{\delta}(q_0, y) \} \)

\(\delta(q_0, a) \):

\(N \) accepts \(x \) means \(\exists q \in A \) with \(q \in \delta(q_0, x) \)

i.e. if \(A \nsubseteq \delta(q_0, x) \neq \emptyset \)

\(L(N) \) is the set of \(x \) accepted by \(N \)

\[
L(N) = \{ x \in \{0, 1\}^* \mid \delta(q_0, x) \cap A \neq \emptyset \}
\]
Are DFA more powerful than NFA?

Claim: If L is DFA-recognizable, then L is NFA-recognizable

Proof: Suppose L is DFA-recognizable. We want to show that L is NFA-recognizable. Let $M := (Q_M, \Sigma, \delta_M, q_0M, A_M)$ be a DFA that recognizes L. We wish to construct an NFA $N = (Q_N, \Sigma, \delta_N, \varepsilon_N, q_0N, A_N)$ with $L(N) = L(M) = L$.

For example, suppose M is given as follows:

\[
M = \begin{align*}
&\begin{array}{c}
\circ \quad \circ \quad \circ \\
q_0 \quad q_1 \quad q_1
\end{array} \\
&\begin{array}{c}
0 \quad 1 \quad 0 \\
1 \quad 1 \quad 1
\end{array}
\]

\[
N = \begin{align*}
&\begin{array}{c}
\circ \quad \circ \quad \circ \\
q_0 \quad q_1 \quad q_1
\end{array} \\
&\begin{array}{c}
0 \quad 1 \quad 0 \\
1 \quad 1 \quad 1
\end{array}
\]

\[
L = \{ x \in \Sigma^* \mid x \text{ has odd } \#(s^2) \}
\]

\[
\delta_N = ?, \quad \varepsilon_N = ?
\]
Are NFA more powerful than DFA?