Lecture 6: Functions

- Define, examples, non-examples

Applications:
- In 2800 everywhere: some examples:
 - Use to define "size" of a set, handling duplicates, infinite sets
 - Use to define "random variables"
- Elsewhere:
 - Functional programming
 - Defining infinite precision numbers
 - Optimizing programs
Def: A function \(f \) from a set \(A \) to a set \(B \) \((f: A \to B)\) is a rule that, for every input \(x \in A \) gives an unambiguous output \(f(x) \in B \).

Terminology:
- \(A \) is the **domain** of \(f \), \(\text{dom}(f) \)
- \(B \) is the **codomain** of \(f \), \(\text{cod}(f) \)

Ex:
- let \(f(x) = x^2 \) ?
- let \(f: \mathbb{R} \to \mathbb{R} \) be given by \(f(x) = x^2 \)

To give a function, give:
- **domain**
- **codomain**
- **rule**

Ex:
- \(\begin{array}{ccc}
 a & \rightarrow & 1 \\
 b & \rightarrow & 2 \\
 c & \rightarrow & 3 \\
\end{array} \)

- **Domain:** \(\{a, b, c\} \)
- **Codomain:** \(\{1, 2, 3\} \)
- **Rule:**
 - \(f(a) = 1 \)
 - \(f(b) = 3 \)
 - \(f(c) = 2 \)

Partial \(f: \) like a \(f: \) but \(f(x) \) might be undefined for some \(x \).

Ex:
- \(A = \{a, b, c\} \), \(B = \{1, 2, 3\} \)
 - \(a \rightarrow 2 \)
 - \(b \rightarrow 2 \)
 - \(c \rightarrow ? \)

US
- **Function**
- **Not a function**

MCS
- **Partial**
- **Not a function**

\((\text{standard math}) \) Not a \(f: \) (lots of CS) Not a \(f: \) (lots of CS)
Example:

- f:
 - a → 1
 - b → 2
 - c → 4

Image of f.

Definition:

The image of f (sometimes written Im(f)) is the set of all points that are output by f.

\[
\text{Im}(f) = \{ y \in B \mid \exists x \in A \text{ with } f(x) = y \}.
\]

Why specify a codomain different from image?

Let \(f(x) = \frac{(x-5)^2}{2} \). (f: \(\mathbb{R} \rightarrow \mathbb{R} \))

Codomain: Clearly \(\mathbb{R} \), function obviously outputs \(\mathbb{R} \)

have to think to figure out image

Note: Some people say "range" and mean "image," others mean "codomain." I avoid "range."
\begin{align*}
\begin{array}{c|c}
(a, b, c) & f(c) = 3 \text{?} \\
\hline
(2, 3) & f(c) = 2 \text{? (ambiguous)} \\
(3) & f(c) = 3 \text{?}
\end{array}
\end{align*}

is a relation (we'll see later).

\begin{align*}
\begin{array}{c|c}
K = & f(c) \\
\hline
9 & \text{?} \\
5 & b \text{?} \\
4 & c \text{?}
\end{array}
\end{align*}

\text{Dom: } \{a, b, c\} \\
\text{Cod: } \{1, 2, 3\} \\
\text{Not specified, } \\
N, \text{NC, } - \text{ not a list.}

OK, if cod. is specified.

Can F's represent lists?

\[\left[1, 7, 4, "\text{hello}" \right] \]

Could be represented as a F:

\[l : \{0, 1, 2, 3\} \rightarrow \{1, 7, 4, "\text{hello}"\} \]

\(l(0) = 1 \quad l(3) = "\text{hello}". \)

\text{(finite) Sequences:}

A sequence can be thought of as a \(\in \text{fin from } N \text{ to } X \)

\[x_0, x_1, x_2, x_3, \ldots \]

\text{E.g. } (1, 2, 3, 4, 5, \ldots)

Think of as \(x : N \rightarrow N \)

\[x(1) = 2 \quad x(i) = x_i \]
Defn: Function f and g are equal if they have the same domain A, codomain B, and for all x ∈ A, \(f(x) = g(x) \).

Note: if \(f = g \) then \(\text{Im}(f) = \text{Im}(g) \).

(Claim):

Proof: Assume \(f = g \). WTS \(\forall y \in \text{Im}(f), y \in \text{Im}(g) \) and \(\forall y \in \text{Im}(g), y \in \text{Im}(f) \).

Note: Functions are objects like any other, can talk about pairs of \(f \)'s or sets of \(f \)'s or \(f \)'s that input or output other \(f \)'s.

Defn: if \(X, Y \) are sets, the \([X \rightarrow Y]\) refers to the set of all \(f \)'s from \(X \) to \(Y \).

Ex: \(X = \{a, b\} \quad Y = \{1, 2\} \)

\([X \rightarrow Y]\) = \{ \begin{align*} &a \rightarrow 1 \\ &b \rightarrow 2 \\ &b \rightarrow 2 \end{align*} \}