Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2, moving one ring at a time, and never having a larger ring on top of a smaller one.

How do we solve this?

- Think recursively!
- Suppose you could solve it for $n - 1$ rings? How could you do it for n?
Solution

- Move top \(n - 1 \) rings from pole 1 to pole 3 (we can do this by assumption)
 - Pretend largest ring isn’t there at all
- Move largest ring from pole 1 to pole 2
- Move top \(n - 1 \) rings from pole 3 to pole 2 (we can do this by assumption)
 - Again, pretend largest ring isn’t there

This solution translates to a recursive algorithm:

- Suppose \(\text{robot}(r \rightarrow s) \) is a command to a robot to move the top ring on pole \(r \) to pole \(s \)
- Note that if \(r, s \in \{1, 2, 3\} \), then \(6 - r - s \) is the other number in the set

procedure \(H(n, r, s) \) \hspace{1cm} [Move \(n \) disks from \(r \) to \(s \)]

\[
\begin{align*}
\text{if } n &= 1 \text{ then } \text{robot}(r \rightarrow s) \\
\text{else } H(n - 1, r, 6 - r - s) &\hspace{1cm} \text{robot}(r \rightarrow s) \\
&\hspace{1cm} H(n - 1, 6 - r - s, s)
\end{align*}
\]

endif

return

endpro
Tree of Calls

Suppose there are initially three rings on pole 1, which we want to move to pole 2:
Analysis of Algorithms

For a particular algorithm, we want to know:

- How much time it takes
- How much space it takes

What does that mean?

- In general, the time/space will depend on the input size
 - The more items you have to sort, the longer it will take
- Therefore want the answer as a function of the input size
 - What is the best/worst/average case as a function of the input size.

Given an algorithm to solve a problem, may want to know if you can do better.

- What is the intrinsic complexity of a problem?

This is what computational complexity is about.
Euclidean Algorithm: Analysis

Input m, n \[m, n\text{ natural numbers, } m \geq n\]

$num \leftarrow m; \ denom \leftarrow n$ \[\text{Initialize } num \text{ and } denom\]

repeat until $denom = 0$

\begin{align*}
q &\leftarrow \lfloor num/denom \rfloor \\
rem &\leftarrow num - (q \times denom) \\
num &\leftarrow denom \quad \text{[New num]} \\
\text{denom} &\leftarrow rem \quad \text{[New denom; note } num \geq denom\]
\end{align*}

endrepeat

Output num \[num = \gcd(m, n)\]

How many times do we go through the loop in the Euclidean algorithm:

- **Best case:** Easy. Never!
- **Average case:** Too hard
- **Worst case:** Can’t answer this exactly, but we can get a good upper bound.
 - See how fast $denom$ goes down in each iteration.
Claim: After two iterations, denom is halved:

- Recall $\text{num} = q \times \text{denom} + \text{rem}$. Use denom' and denom'' to denote value of denom after 1 and 2 iterations. Two cases:

 1. $\text{rem} \leq \text{denom}/2 \Rightarrow \text{denom}' \leq \text{denom}/2$ and $\text{denom}'' < \text{denom}/2$.
 2. $\text{rem} > \text{denom}/2$. But then $\text{num}' = \text{denom}$, $\text{denom}' = \text{rem}$. At next iteration, $q = 1$, and $\text{rem}' = \text{num}' - \text{denom}' < \text{denom}/2$

- How long until denom is ≤ 1?

 \[\circ < 2 \log_2(m) \text{ steps!} \]

- After at most $2 \log_2(m)$ steps, $\text{denom} = 0$.

Towers of Hanoi: Analysis

procedure \(H(n, r, s) \) [Move \(n \) disks from \(r \) to \(s \)]
\[
\text{if } n = 1 \text{ then } \text{robot}(r \rightarrow s)
\]
\[
\text{else } H(n - 1, r, 6 - r - s)
\]
\[
\quad \text{robot}(r \rightarrow s)
\]
\[
\quad H(n - 1, 6 - r - s, s)
\]
\[
\text{endif}
\]
\[
\text{return}
\]
\[
\text{endpro}
\]

Let \(h_n = \# \) moves to move \(n \) rings from pole \(r \) to pole \(s \).

- Clearly \(h_1 = 1 \)
- Algorithm shows that \(h_n = 2h_{n-1} + 1 \)
 - \(h_2 = 3; h_3 = 7; h_4 = 15; \ldots \)
 - \(h_n = 2^n - 1 \)

We’ll prove this formally later, when we also show that this is optimal.
Sequential Search: Analysis

Suppose we have a linked list — a sequence of words in alphabetical order. Given a new word, we want to determine if it’s on the list, and where.

Input n \hspace{2cm} [number of words in list]
\vspace{0.5cm}
w_1, \ldots, w_n \hspace{2cm} [alphabetized list]
\vspace{0.5cm}
w \hspace{2cm} [search word]

Algorithm SeqSearch
\vspace{0.5cm}
i $\leftarrow 1$
\vspace{0.5cm}
repeat until $i > n$ or $w \leq w_i$
\vspace{0.5cm}
i $\leftarrow i + 1$
\vspace{0.5cm}
end repeat
\vspace{0.5cm}

if $w = w_i$ then print i else print ‘failure’ endif

How many times do we go through the loop?

- Best case: 0
- Worst case: n
- Average case: roughly $n/2$ if w is on the list.
Binary Search: Analysis

Sequential search is terrible for finding a word in a dictionary. Can do much better with random access.

• it’s like playing 20 questions — cut the search space in half with each question!

Input n [number of words in list]
w_1, \ldots, w_n [alphabetized list]
w [search word]

Algorithm BinSearch

$F \leftarrow 1; L \leftarrow n$ [Initialize range]
i $\leftarrow \lfloor (F + L)/2 \rfloor$
repeat until $w = w_i$ or $F > L$

if $w < w_i$ then $L \leftarrow i - 1$ else $F \leftarrow i + 1$ endif

i $\leftarrow \lfloor (F + L)/2 \rfloor$
end repeat

if $w = w_i$ then print i else print ‘failure’ endif

How many times do we go through the loop?

• Best case: 0

• Average case: too hard for us

• Worst case: $\lceil \log_2(n) \rceil + 1$

 o After each loop iteration, $F - L$ is halved.
Methods of Proof

One way of proving things is by induction.

• That’s coming next.

What if you can’t use induction?

Typically you’re trying to prove a statement like “Given X, prove (or show that) Y”. This means you have to prove

$$X \implies Y$$

In the proof, you’re allowed to assume X, and then show that Y is true, using X.

• A special case: if there is no X, you just have to prove Y or $true \implies Y$.

Alternatively, you can do a proof by contradiction: Assume that Y is false, and show that X is false.

• This amounts to proving

$$\neg Y \implies \neg X$$
Example

Theorem \(n \) is odd iff \(n^2 \) is odd, for \(n \in N^+ \).

Proof: We have to show

1. \(n \) odd \(\Rightarrow \) \(n^2 \) odd
2. \(n^2 \) odd \(\Rightarrow \) \(n \) odd

For (1), if \(n \) is odd, it is of the form \(2k + 1 \). Hence,
\[n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \]
Thus, \(n^2 \) is odd.

For (2), we proceed by contradiction. Suppose \(n^2 \) is odd and \(n \) is even. Then \(n = 2k \) for some \(k \), and \(n^2 = 4k^2 \). Thus, \(n^2 \) is even. This is a contradiction. Thus, \(n \) must be odd.
A Proof By Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof: By contradiction. Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = a/b$ for some $a, b \in \mathbb{N}^+$. We can assume that a/b is in lowest terms.

- Therefore, a and b can’t both be even.

Squaring both sides, we get

$$2 = \frac{a^2}{b^2}$$

Thus, $a^2 = 2b^2$, so a^2 is even. This means that a must be even.

Suppose $a = 2c$. Then $a^2 = 4c^2$.

Thus, $4c^2 = 2b^2$, so $b^2 = 2c^2$. This means that b^2 is even, and hence so is b.

Contradiction!

Thus, $\sqrt{2}$ must be irrational.
Induction

This is perhaps the most important technique we’ll learn for proving things.

Idea: To prove that a statement is true for all natural numbers, show that it is true for 1 (base case or basis step) and show that if it is true for \(n \), it is also true for \(n + 1 \) (inductive step).

- The base case does not have to be 1; it could be 0, 2, 3, \ldots
- If the base case is \(k \), then you are proving the statement for all \(n \geq k \).

It is sometimes quite difficult to formulate the statement to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT THE FORMULATION OF THE STATEMENT TO PROVE. YOU MUST STATE IT VERY CLEARLY. I WILL ALSO BE PICKY ABOUT THE FORM OF THE INDUCTIVE PROOF.
Writing Up a Proof by Induction

1. State the hypothesis very clearly:
 - Let $P(n)$ be the statement ... [some statement involving n]

2. The basis step
 - $P(k)$ holds because ... [where k is the base case, usually 0 or 1]

3. Inductive step
 - Assume $P(n)$. We prove $P(n + 1)$ holds as follows ... Thus, $P(n) \Rightarrow P(n + 1)$.

4. Conclusion
 - Thus, we have shown by induction that $P(n)$ holds for all $n \geq k$ (where k was what you used for your basis step). [It’s not necessary to always write the conclusion explicitly.]
A Simple Example

Theorem: For all positive integers \(n \),

\[
\sum_{k=1}^{n} k = \frac{n(n + 1)}{2}.
\]

Proof: By induction. Let \(P(n) \) be the statement

\[
\sum_{k=1}^{n} k = \frac{n(n + 1)}{2}.
\]

Basis: \(P(1) \) asserts that \(\sum_{k=1}^{1} k = \frac{1(1+1)}{2} \). Since the LHS and RHS are both 1, this is true.

Inductive step: Assume \(P(n) \). We prove \(P(n + 1) \).

\[
\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n + 1)
= \frac{n(n+1)}{2} + (n + 1) \quad [\text{Induction hypothesis}]
= \frac{n(n+1)+2(n+1)}{2}
= \frac{(n+1)(n+2)}{2}
\]

Thus, \(P(n) \) implies \(P(n + 1) \), so the result is true by induction.
Notes:

- You can write \(P(n) \) instead of writing “Induction hypothesis” at the end of the line, or you can write “\(P(n) \)” at the end of the line.

 ○ Whatever you write, make sure it’s clear when you’re applying the induction hypothesis

- Notice how we rewrite \(\sum_{k=1}^{n+1} k \) so as to be able to appeal to the induction hypothesis. This is standard operating procedure.
Another example

Theorem: \((1+x)^n \geq 1+nx\) for all nonnegative integers \(n\) and all \(x \geq 0\).

Proof: By induction on \(n\). Let \(P(n)\) be the statement \((1+x)^n \geq 1+nx\).

Basis: \(P(0)\) says \((1+x)^0 \geq 1\). This is clearly true.

Inductive Step: Assume \(P(n)\). We prove \(P(n + 1)\).

\[
(1 + x)^{n+1} = (1 + x)^n(1 + x) \\
\geq (1 + nx)(1 + x) \quad \text{[Induction hypothesis]} \\
= 1 + nx + x + nx^2 \\
= 1 + (n + 1)x + nx^2 \\
\geq 1 + (n + 1)x
\]
Euclidean Algorithm: Worst Case

This time, we’ll do a formal analysis. Suppose we start the algorithm with inputs m and n. Let denom_0, denom_1, \ldots be the values of denom on successive iterations of the loop. Similarily num_0, num_1, \ldots.

Lemma 1: For all natural numbers n, $\text{denom}_{n+2} \leq \text{denom}_n/2$.

Proof: We don’t need induction here. The proof we did before works. (We actually proved $<$, but it’s easier to use \leq.)

Lemma 2: For all natural numbers n, $\text{denom}_{2n} \leq \text{denom}_0/2^n$.

By induction. Let $P(n)$ be the statement $\text{denom}_{2n} \leq \text{denom}_0/2^n$.

Basis: $\text{denom}_0 \leq \text{denom}_0/1$.

Inductive Step: Assume $P(n)$.

\[
\begin{align*}
\text{denom}_{2(n+1)} &= \text{denom}_{2n+2} \\
&\leq \text{denom}_{2n}/2 \quad \text{[Lemma 1]} \\
&\leq \text{denom}_0/(2^n \times 2) \quad \text{[Induction Hypothesis]} \\
&= \text{denom}_0/2^{n+1}
\end{align*}
\]
Lemma 3: On input (m, n), we go through the loop at most $2 \lfloor \log_2(n) \rfloor + 1$ times.

Proof:

$$\text{denom}_2(\lfloor \log_2 n \rfloor) \leq \text{denom}_0 / 2^{\lfloor \log_2 n \rfloor} \leq n / n = 1$$

(Recall $2^{\log_2 n} = n$, so $2^{\lfloor \log_2 n \rfloor} \geq n$.)

Thus, $\text{denom}_2^{\lfloor \log_2 n \rfloor + 1} = 0$.
Towers of Hanoi

Theorem: It takes $2^n - 1$ moves to perform $H(n, r, s)$, for all positive n, and all $r, s \in \{1, 2, 3\}$.

Proof: Let $P(n)$ be the statement “It takes $2^n - 1$ moves to perform $H(n, r, s)$ and all $r, s \in \{1, 2, 3\}$.”

- Note that “for all positive n” is not part of $P(n)$!
- $P(n)$ is a statement about a particular n.
- If it were part of $P(n)$, what would $P(1)$ be?

Basis: $P(1)$ is immediate: robot$(r \leftarrow s)$ is the only move in $H(1, r, s)$, and $2^1 - 1 = 1$.

Inductive step: Assume $P(n)$. To perform $H(n+1, r, s)$, we first do $H(n, r, 6 - r - s)$, then robot$(r \leftarrow s)$, then $H(n, 6 - r - s, s)$. Altogether, this takes $2^n - 1 + 1 + 2^n - 1 = 2^{n+1} - 1$ steps.
A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r to pole s requires at least $2^n - 1$ steps.

Proof: By induction, taking the statement of the theorem to be $P(n)$.

Basis: Easy: Clearly it requires (at least) 1 step to move 1 ring from pole r to pole s.

Inductive step: Assume $P(n)$. If we want to move $n + 1$ rings from r to s, at some point we have to move the largest ring. At this point, the pole we want to move the largest ring to must be clear, and all the other n rings must be on the third pole. Thus, by the induction hypothesis, $2^n - 1$ moves were used to get them there.

Now we’re going to need at least $2^n - 1$ moves to move the n rings back on top of the largest ring. This means we need at least

$$2^n - 1 + 1 + 2^n - 1 = 2^{n+1} - 1$$ steps.
Strong Induction

Sometimes when you’re proving $P(n + 1)$, you want to be able to use $P(j)$ for $j < n$, not just $P(n)$. You can do this with *strong induction*.

1. Let $P(n)$ be the statement … [some statement involving n]

2. The basis step
 - $P(k)$ holds because … [where k is the base case, usually 0 or 1]

3. Inductive step
 - Assume $P(k), \ldots, P(n)$ holds. We show $P(n + 1)$ holds as follows …

Although strong induction looks stronger than induction, it’s not. Anything you can do with strong induction, you can also do with regular induction, by appropriately modifying the induction hypothesis.

- If $P(n)$ is the statement you’re trying to prove by strong induction, let $P'(n)$ be the statement $P(1), \ldots, P(n)$ hold. Proving $P'(n)$ by regular induction is the same as proving $P(n)$ by strong induction.
An example using strong induction

Theorem: Any item costing \(n > 7 \) kopecks can be bought using only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let \(P(n) \) be the statement that \(n \) kopecks can be paid using 3-kopeck and 5-kopeck coins, for \(n \geq 8 \).

Basis: \(P(8) \) is clearly true since \(8 = 3 + 5 \).

Inductive step: Assume \(P(8), \ldots, P(n) \) is true. We want to show that \(P(n + 1) \). If \(n + 1 \) is 9 or 10, then it’s easy to see that there’s no problem (\(P(9) \) is true since \(9 = 3 + 3 + 3 \), and \(P(10) \) is true since \(10 = 5 + 5 \)). Otherwise, note that \((n + 1) - 3 = n - 2 \geq 8 \). Thus, \(P(n - 2) \) is true, using the induction hypothesis. This means we can use 3- and 5-kopeck coins to pay for something costing \(n - 2 \) kopecks. One more 3-kopeck coin pays for something costing \(n + 1 \) kopecks.