Inverse Functions

If $f : S \rightarrow T$, then f^{-1} maps an element in the range of f to all the elements that are mapped to it by f.

$$f^{-1}(t) = \{s|f(s) = t\}$$

- if $f(2) = 3$, then $2 \in f^{-1}(3)$.

f^{-1} is not a function from range(f) to S.

It is a function if f is one-to-one.

- In this case, $f^{-1}(f(x)) = x$.
Functions You Should Know
(and Love)

• **Absolute value**: Domain = \(R \); Range = \(\{0\} \cup R^+ \)
 \[
 |x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
 \end{cases}
 \]
 ○ \(|3| = |-3| = 3 \)

• **Floor function**: Domain = \(R \); Range = \(Z \)
 \[[x] = \text{largest integer not greater than } x \]
 ○ \([3.2] = 3; \ [\sqrt{3}] = 1; \ [-2.5] = -3 \)

• **Ceiling function**: Domain = \(R \); Range = \(Z \)
 \[[x] = \text{smallest integer not less than } x \]
 ○ \([3.2] = 4; \ [\sqrt{3}] = 2; \ [-2.5] = -2 \)

• **Factorial function**: Domain = Range = \(N \)
 \[n! = n(n-1)(n-2)\ldots3 \times 2 \times 1 \]
 ○ \(5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \)
 ○ By convention, \(0! = 1 \)
Modular arithmetic

[[MOSTLY NOT IN THE TEXT]]

Mod function: Domain = \(Z \times N^+ \); Range = \(N \)

- Informally, \(m \mod n \) is the remainder after you divide \(m \) by \(n \)
- \(8 \mod 3 = 2; \) \(53 \mod 20 = 13; \) \(-8 \mod 3 = 1 \)
- Two equivalent formal definitions:
 - \(n \mod m = n - \lfloor n/m \rfloor m \)
 - \(n \mod m = r \), where \(n = qm + r, \) \(0 \leq r < m \)
- The text assumes that \(n \) is a positive integer, but this definition makes sense if \(n \) is an arbitrary integer
Modular Arithmetic

ALSO NOT IN THE TEXT:

\(a \equiv b \pmod{m} \) means that \(a \) and \(b \) are congruent to the same thing modulo \(m \)

- \(a = q_1m + r; \ b = q_2m + r \)
- \(a \equiv b \pmod{m} \) iff \(a - b \) is divisible by \(m \)
- **Example:** \(17 \equiv 27 \pmod{5} \)

You can add, subtract, and multiply modulo \(m \):

- \((2 + 6) \pmod{7} = 8 \pmod{7} = 1 \pmod{7} \)
- \((2 \times 6) \pmod{7} = 12 \pmod{7} = 5 \pmod{7} \)

More precisely, if \(a \equiv a' \pmod{m} \) and \(b \equiv b' \pmod{m} \) then

- \(a + b \equiv a' + b' \pmod{m} \)
- \(a \times b \equiv a' \times b' \pmod{m} \)
Hashing

One application of modular arithmetic is *hashing*:

Problem: How to store lots of things in relatively few memory locations (for quick retrieval). For example, you may want to store the records of 200,000,000 people in 1,000,000 record locations, to allow for quick retrieval.

- One approach: store the first 200 in memory location 1, the next 200 in memory location 2, etc.
- Problem: if you add one more person to the list, it might throw everything off.
- Better solution: Compute the person’s social security number mod 1,000,000, and store the information in that memory location.
Exponents

Exponential with base \(a \): Domain = \(R \), Range=\(R^+ \)

\[f(x) = a^x \]

- Note: \(a \), the base, is fixed; \(x \) varies
- You probably know: \(a^n = a \times \cdots \times a \) (\(n \) times)

How do we define \(f(x) \) if \(x \) is not a positive integer?

- **Want:** (1) \(a^{x+y} = a^x a^y \); (2) \(a^1 = a \)

This means

- \(a^2 = a^{1+1} = a^1 a^1 = a \times a \)
- \(a^3 = a^{2+1} = a^2 a^1 = a \times a \times a \)
- \(\ldots \)
- \(a^n = a \times \ldots \times a \) (\(n \) times)

We get more:

- \(a = a^1 = a^{1+0} = a \times a^0 \)
 - Therefore \(a^0 = 1 \)
- \(1 = a^0 = a^{b+(-b)} = a^b \times a^{-b} \)
 - Therefore \(a^{-b} = 1/a^b \)
• \(a = a^1 = a^{\frac{1}{2} + \frac{1}{2}} = a^{\frac{1}{2}} \times a^{\frac{1}{2}} = (a^{\frac{1}{2}})^2\)

 ○ Therefore \(a^{\frac{1}{2}} = \sqrt{a}\)

• Similar arguments show that \(a^{\frac{1}{k}} = \sqrt[k]{a}\)

• \(a^{mx} = a^x \times \cdots \times a^x (m \text{ times}) = (a^x)^m\)

 ○ Thus, \(a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m\).

This determines \(a^x\) for all \(x\) rational. The rest follows by continuity.
Logarithms

Logarithm base a: Domain = R^+; Range = R

$$y = \log_a(x) \iff a^y = x$$

- $\log_2(8) = 3; \log_2(16) = 4; 3 < \log_2(15) < 4$

The key properties of the log function follow from those for the exponential:

1. $\log_a(1) = 0$ (because $a^0 = 1$)
2. $\log_a(a) = 1$ (because $a^1 = a$)
3. $\log_a(xy) = \log_a(x) + \log_a(y)$

Proof: Suppose $\log_a(x) = z_1$ and $\log_a(y) = z_2$.

Then $a^{z_1} = x$ and $a^{z_2} = y$.

Therefore $xy = a^{z_1} \times a^{z_2} = a^{z_1+z_2}$.

Thus $\log_a(xy) = z_1 + z_2 = \log_a(x) + \log_a(y)$.

4. $\log_a(x^r) = r \log_a(x)$
5. $\log_a(1/x) = -\log_a(x)$ (because $a^{-y} = 1/a^y$)
6. $\log_b(x) = \log_a(x)/\log_a(b)$
Examples:

- $\log_2(1/4) = -\log_2(4) = -2$.
- $\log_2(-4)$ undefined

 \[
 \log_2(2^{10}3^5) \\
 = \log_2(2^{10}) + \log_2(3^5) \\
 = 10 \log_2(2) + 5 \log_2(3) \\
 = 10 + 5 \log_2(3)
 \]
Limit Properties of the Log Function

\[
\lim_{x \to \infty} \log(x) = \infty
\]
\[
\lim_{x \to \infty} \frac{\log(x)}{x} = 0
\]

As \(x \) gets large \(\log(x) \) grows without bound.

But \(x \) grows MUCH faster than \(\log(x) \).

In fact, \(\lim_{x \to \infty} (\log(x)^m)/x = 0 \)
Polynomials

\[f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k \] is a polynomial function.

- \(a_0, \ldots, a_k \) are the coefficients

You need to know how to multiply polynomials:

\[
(2x^3 + 3x)(x^2 + 3x + 1) \\
= 2x^3(x^2 + 3x + 1) + 3x(x^2 + 3x + 1) \\
= 2x^5 + 6x^4 + 2x^3 + 3x^3 + 9x^2 + 3x \\
= 2x^5 + 6x^4 + 5x^3 + 9x^2 + 3x
\]

Exponentials grow MUCH faster than polynomials:

\[
\lim_{x \to \infty} \frac{a_0 + \cdots + a_k x^k}{b^x} = 0 \text{ if } b > 1
\]
Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

- The naive algorithm takes time $n^2/4$ on average to sort n items
- A more sophisticated algorithm times time $2n \log(n)$

Which is better?

$$\lim_{n \to \infty} \left(\frac{2n \log(n)}{(n^2/4)} \right) = \lim_{n \to \infty} \left(\frac{8 \log(n)}{n} \right) = 0$$

For example,

- if $n = 1,000,000$, $2n \log(n) = 40,000,000$ — this is doable
 $n^2/4 = 250,000,000,000$ — this is not doable

Algorithms that take exponential time are hopeless on large datasets.
Sum and Product Notation

\[\sum_{i=0}^{k} a_i x^i = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k \]

\[\sum_{i=2}^{5} i^2 = 2^2 + 3^2 + 4^2 + 5^2 = 54 \]

Can limit the set of values taken on by the index \(i \):

\[\sum_{\{i:2 \leq i \leq 8 \mid i \ \text{even}\}} a_i = a_2 + a_4 + a_6 + a_8 \]

Can have double sums:

\[\begin{align*}
\sum_{i=1}^{2} \sum_{j=0}^{3} a_{ij} &= \sum_{i=1}^{2} (\sum_{j=0}^{3} a_{ij}) \\
&= \sum_{j=0}^{3} a_{1j} + \sum_{j=0}^{3} a_{2j} \\
&= a_{10} + a_{11} + a_{12} + a_{13} + a_{20} + a_{21} + a_{22} + a_{23}
\end{align*} \]

Product notation similar:

\[\prod_{i=0}^{k} a_i = a_0 a_1 \cdots a_k \]
Changing the Limits of Summation

This is like changing the limits of integration.

- $\sum_{i=1}^{n+1} a_i = \sum_{i=0}^{n} a_{i+1} = a_1 + \cdots + a_{n+1}$

Steps:

- Start with $\sum_{i=1}^{n+1} a_i$.
- Let $j = i - 1$. Thus, $i = j + 1$.
- Rewrite limits in terms of j: $i = 1 \rightarrow j = 0$; $i = n + 1 \rightarrow j = n$
- Rewrite body in terms of $a_i \rightarrow a_{j+1}$
- Get $\sum_{j=0}^{n} a_{j+1}$
- Now replace j by i (j is a dummy variable). Get $\sum_{i=0}^{n} a_{i+1}$
Matrix Algebra

An $m \times n$ matrix is a two-dimensional array of numbers, with m rows and n columns:

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

- A $1 \times n$ matrix $[a_1 \ldots a_n]$ is a row vector.
- An $m \times 1$ matrix is a column vector.

We can add two $m \times n$ matrices:

- If $A = [a_{ij}]$ and $B = [b_{ij}]$ then $A + B = [a_{ij} + b_{ij}]$.

\[
\begin{bmatrix}
2 & 3 \\
5 & 7
\end{bmatrix} +
\begin{bmatrix}
3 & 7 \\
4 & 2
\end{bmatrix} =
\begin{bmatrix}
5 & 10 \\
9 & 9
\end{bmatrix}
\]

Another important operation: transposition.

- If we transpose an $m \times n$ matrix, we get an $n \times m$ matrix by switching the rows and columns.

\[
\begin{bmatrix}
2 & 3 & 9 \\
5 & 7 & 12
\end{bmatrix}^T =
\begin{bmatrix}
2 & 5 \\
3 & 7 \\
9 & 12
\end{bmatrix}
\]
Matrix Multiplication

Given two vectors \(\vec{a} = [a_1, \ldots, a_k] \) and \(\vec{b} = [b_1, \ldots, b_k] \), their inner product (or dot product) is

\[
\vec{a} \cdot \vec{b} = \sum_{i=1}^{k} a_i b_i
\]

- \([1, 2, 3] \cdot [-2, 4, 6] = (1 \times -2) + (2 \times 4) + (3 \times 6) = 24.\]

We can multiply an \(n \times m \) matrix \(A = [a_{ij}] \) by an \(m \times k \) matrix \(B = [b_{ij}] \), to get an \(n \times k \) matrix \(C = [c_{ij}] \):

- \(c_{ij} = \sum_{r=1}^{m} a_{ir} b_{rj} \)
- this is the inner product of the \(i \)th row of \(A \) with the \(j \)th column of \(B \)
\[
\begin{bmatrix}
2 & 3 & 1 \\
5 & 7 & 4
\end{bmatrix}
\times
\begin{bmatrix}
3 & 7 \\
4 & 2 \\
-1 & -2
\end{bmatrix}
=
\begin{bmatrix}
17 & 18 \\
39 & 41
\end{bmatrix}
\]

\[17 = (2 \times 3) + (3 \times 4) + (1 \times -1)\]
\[18 = (2 \times 7) + (3 \times 2) + (1 \times -2)\]
\[39 = (5 \times 3) + (7 \times 4) + (4 \times -1)\]
\[41 = (5 \times 7) + (7 \times 2) + (4 \times -2)\]
Why is multiplication defined in this strange way?

- Because it’s useful!

Suppose

\[
\begin{align*}
z_1 &= 2y_1 + 3y_2 + y_3 \quad y_1 = 3x_1 + 7x_2 \\
z_2 &= 5y_1 + 7y_2 + 4y_3 \quad y_2 = 4x_1 + 2x_2 \\
y_3 &= -x_1 - 2x_2
\end{align*}
\]

Thus, \[
\begin{bmatrix}
z_1 \\
z_2
\end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 7 & 4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 4 & 2 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
\]

Suppose we want to express the \(z\)'s in terms of the \(x\)'s:

\[
\begin{align*}
z_1 &= 2y_1 + 3y_2 + y_3 \\
 &= 2(3x_1 + 7x_2) + 3(4x_1 + 2x_2) + (-x_1 - 2x_2) \\
 &= (2 \times 3 + 3 \times 4 + (-1))x_1 + (2 \times 7 + 3 \times 2 + (-2))x_2 \\
 &= 17x_1 + 18x_2
\end{align*}
\]

Similarly, \(z_2 = 39x_1 + 41x_2\).

\[
\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 7 & 4 \end{bmatrix} \begin{bmatrix} 3 & 7 \\ 4 & 2 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
\]
Logic Concepts

The most common mathematical argument is an implication.

- If $x = 2$ then $x^2 = 4$

The implication is sometimes not as obvious:

- $x^2 = 4$ if $x = 2$
- $x^2 = 4$ when $x = 2$
- $x = 2$ implies $x^2 = 4$
- Suppose $x = 2$. Then $x^2 = 4$.
- whenever $x = 2$, $x^2 = 4$
- $x = 2$ only if $x^2 = 4$
- The condition $x = 2$ is sufficient for $x^2 = 4$
- The condition $x^2 = 4$ is necessary for $x = 2$

Note that the order of $x = 2$ and $x^2 = 4$ change.

We denote the implication “If A then B” by

$$A \Rightarrow B$$

YOU NEED TO LEARN TO RECOGNIZE IMPLICATIONS.
Implications chain:

• If $A \implies B$ and $B \implies C$ then $A \implies C$

• $((A \implies B) \land (B \implies C)) \implies (A \implies C)$

The converse of $A \implies B$ is $B \implies A$.

• They are not equivalent.

• $x = 2 \implies x^2 = 4$ is true; $x^2 = 4 \implies x = 2$ is not true (x could be -2)

The contrapositive of $A \implies B$ is $\neg B \implies \neg A$.

• \neg stands for negation

• A statement is equivalent to its contrapositive.

• If $x^2 \neq 4$ then $x \neq 2$.

• If you’re asked to prove $A \implies B$, one way to do it (which is sometimes easier) is to show $\neg B \implies \neg A$
Equivalence

If both $A \Rightarrow B$ and $B \Rightarrow A$ are true, we write:

$$A \iff B$$

A is equivalent to B (A if and only if B; A iff B)

$$(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$$

S is a square if and only if S is both a rectangle and a rhombus.

- S being a rectangle and a rhombus is sufficient for S to be a square
- S being a rectangle and a rhombus is necessary for S to be a square
Quantifiers

Quantifiers are words like *every, all, some*:

- *Every* prime other than two is odd
- *Some* real numbers are not integers

Any is ambiguous: sometimes it means *every*, and sometimes it means *some*

- Anybody knows that $1 + 1 = 2$
- He’d be happy to get an *A* in any course

Avoid *any*: use every (= all) or some.
Negation

The negation of A, written $\neg A$, is true exactly if A is false:

- The negation of $x = 2$ is $x \neq 2$

Be careful when negating quantifiers!

- What is the negation of $A = \text{"Some of John’s answers are correct"}$
- Is it $B = \text{"Some of John’s answers are not correct"}$
 - No! A and B can be simultaneously true
- It’s “All of John’s answers are incorrect”.

Algorithms

An *algorithm* is a recipe for solving a problem.

In the book, a particular language is used for describing algorithms.

- You need to learn the language well enough to read the examples
- You need to learn to express your solution to a problem algorithmically and *unambiguously*
- **YOU DO NOT NEED TO LEARN IN DETAIL ALL THE IDIOSYNCRACIES OF THE PARTICULAR LANGUAGE USED IN THE BOOK.**
 - You will not be tested on it, nor will most of the questions in homework use it
Main Features of the Language

• Assignment statements
 ○ $x \leftarrow 3$

• if . . . then . . . else statements
 ○ if $x = 3$ then $y \leftarrow y + 1$ else $y \leftarrow z$ endif
 ○ $x = 3$ is a test or predicate; it evaluates to either true or false

• Selection statement

 if B_1 then S_1
 B_2 then S_2
 \vdots
 B_k then S_k
 [else S_{k+1}]
 endif
Iteration

Lots of variants:

repeat until B
 S
endrepeat

or

repeat
 S
endrepeat when B

or

repeat while B
 S
endrepeat

(Same as while B do S)

or

for $C = 1$ to n
 S
endfor
Input and Output

Programs start with input statements of the form:

Input x, a_0, \ldots, a_k

- the values of the variables x, a_0, \ldots, a_k are assumed to be available at the beginning of the program

Programs end with output statements of the form:

Output P

Example

Input a_0, a_1, \ldots, a_n, x

\[
P \leftarrow a_n \\
\text{for } k = 1 \text{ to } n \\
P \leftarrow Px + a_{n-k} \\
\text{Output } P
\]

What does this compute?
The Euclidean Algorithm

The greatest common divisor of two natural numbers is the largest positive integer that divides both.

- \(\gcd(12, 15) = 3; \gcd(34, 51) = 17; \gcd(6, 45) = 3 \)
- By convention, \(\gcd(n, 0) = n \).

There is a method for calculating the gcd that goes back to Euclid:

- **Key observation:** if \(n > m \) and \(q \) divides both \(n \) and \(m \), then \(q \) divides \(n - m \) and \(n + m \).

 - Proof: If \(n = aq \) and \(m = bq \) then \(n - m = (a - b)q \) and \(n + m = (a + b)q \).

Therefore \(\gcd(n, m) = \gcd(m, n - m) \).

- Proof: Show that \(q \) divides both \(n \) and \(m \) iff \(q \) divides both \(m \) and \(n - m \). (If \(q \) divides \(n \) and \(m \), then \(q \) divides \(n - m \) by the argument above. If \(q \) divides \(m \) and \(n - m \), then \(q \) divides \(m + (n - m) = n \).

- This allows us to reduce the gcd computation to a simpler case.

We can do even better:

- \(\gcd(n, m) = \gcd(m, n - m) = \gcd(m, n - 2m) = \ldots \)
• keep going as long as $n - qm \geq 0$ — $\lfloor n/m \rfloor$ steps

Going back to $\gcd(6, 45)$:

• $\lfloor 45/6 \rfloor = 7$; remainder $(45 \mod 6)$ is 3
• $\gcd(6, 45) = \gcd(6, 45 - 7 \times 6) = \gcd(6, 3) = 3$
We can keep this up this procedure to compute \(\gcd(n_1, n_2)\):

- If \(n_1 \geq n_2\), write \(n_1\) as \(q_1n_2 + r_1\), where \(0 \leq r_1 < n_2\)
 - \(q_1 = \lfloor n_1/n_2 \rfloor\)
- \(\gcd(n_1, n_2) = \gcd(r_1, n_2)\)
- Now \(r_1 < n_2\), so switch their roles:
- \(n_2 = q_2r_1 + r_2\), where \(0 \leq r_2 < r_1\)
- \(\gcd(r_1, n_2) = \gcd(r_1, r_2)\)
- Notice that \(\max(n_1, n_2) > \max(r_1, n_2) > \max(r_1, r_2)\)
- Keep going until we have a remainder of 0 (i.e., something of the form \(\gcd(r_k, 0)\) or \(\gcd(0, r_k)\))
 - This is bound to happen sooner or later
An algorithm for gcd

Input m, n \[m, n \text{ natural numbers, } m \geq n\]

$num \leftarrow m; \ denom \leftarrow n$ \[\text{Initialize } num \text{ and } denom\]

repeat until $\ denom = 0$

$q \leftarrow \lfloor num/\ denom \rfloor$

$rem \leftarrow num - (q \ast \ denom)$ \[\text{rem} = num \text{ mod } denom\]

$num \leftarrow \ denom$ \[\text{New } num\]

$denom \leftarrow rem$ \[\text{New } denom; \text{ note } num \geq denom\]

endrepeat

Output num \[num = \text{gcd}(m, n)\]

Example: $\text{gcd}(84, 33)$

Iteration 1: $num = 84, \ denom = 33, q = 2, rem = 18$

Iteration 2: $num = 33, \ denom = 18, q = 1, rem = 15$

Iteration 3: $num = 18, \ denom = 15, q = 1, rem = 3$

Iteration 4: $num = 15, \ denom = 3, q = 5, rem = 0$

Iteration 5: $num = 3, \ denom = 0 \Rightarrow \text{gcd}(84, 33) = 3$
How do we know this works?

• We have two *loop invariants*, which are true each time we start the loop:

 $\circ \ \gcd(m, n) = \gcd(num, denom)$

 $\circ \ num \geq \ denom$

• At the end, $denom = 0$, so $\gcd(num, denom) = num$.
Procedure Calls

It is useful to extend our algorithmic language to have procedures that we can call repeatedly. For example, we may want to have a procedure for computing gcd or factorial, that we can call with different arguments. Here’s the notation used in the book:

procedure Name(variable list)
 procedure body (includes a return statement)
endpro

- The return statement returns control to the portion of the algorithm from where the procedure was called

Example:

procedure Factorial(n)
 fact ← 1
 m ← n
 repeat until m = 1
 fact ← fact × m
 m ← m − 1
 endrepeat
 return fact
endpro
Recursion

Recursion occurs when a procedure calls itself.

Example: A recursive procedure for computing gcd

```plaintext
procedure gcd-rec(i, j)
    if j = 0 then answer ← i
    else gcd-rec(j, i - ⌊i/j⌋j)
endif
return answer
endpro
```

gcd-rec(m, n)

To compute gcd-rec(84,33), we call

- gcd-rec(33,18)
- gcd-rec(18,15)
- gcd-rec(15,3)
- gcd-rec(3,0)

How do we know that the chain of recursive calls is finite?

- Same reasoning as before
Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2, moving one ring at a time, and never having a larger ring on top of a smaller one.

How do we solve this?

• Think recursively!

• Suppose you could solve it for $n - 1$ rings? How could you do it for n?
Solution

- Move top $n - 1$ rings from pole 1 to pole 3 (we can do this by assumption)
 - Pretend largest ring isn’t there at all
- Move largest ring from pole 1 to pole 2
- Move top $n - 1$ rings from pole 3 to pole 2 (we can do this by assumption)
 - Again, pretend largest ring isn’t there

This solution translates to a recursive algorithm:

- Suppose robot($r \rightarrow s$) is a command to a robot to move the top ring on pole r to pole s
- Note that if $r, s \in \{1, 2, 3\}$, then $6 - r - s$ is the other number in the set

procedure $H(n, r, s)$ [Move n disks from r to s]

if $n = 1$ then robot($r \rightarrow s$)
else $H(n - 1, r, 6 - r - s)$
 robot($r \rightarrow s$)
 $H(n - 1, 6 - r - s, s)$
endif
return
endproc
Tree of Calls

Suppose there are initially three rings on pole 1, which we want to move to pole 2:
Analysis of Algorithms

For a particular algorithm, we want to know:

- How much time it takes
- How much space it takes

What does that mean?

- In general, the time/space will depend on the input size
 - The more items you have to sort, the longer it will take
- Therefore want the answer as a function of the input size
 - What is the best/worst/average case as a function of the input size.

Given an algorithm to solve a problem, may want to know if you can do better.

- What is the *intrinsc complexity* of a problem?

This is what *computational complexity* is about.