Breadth-First Search

Input $G(V, E)$
v
[a connected graph]
[start vertex]

Algorithm Breadth-First Search
visit v
$V' \leftarrow \{v\}$
[V' is the vertices already visited]
Put v on Q
[Q is a queue]
repeat while $Q \neq \emptyset$
\[u \leftarrow \text{head}(Q) \]
[head(Q) is the first item on Q]
for $w \in A(u)$
\[A(u) = \{w \mid \{u, w\} \in E\} \]
if $w \notin V'$
then visit w
Put w on Q
$V' \leftarrow V' \cup \{w\}$
endif
endfor
Delete u from Q

Depth-First Search

Input $G(V, E)$
v
[a connected graph]
[start vertex]

Algorithm Depth-First Search
visit v
$V' \leftarrow \{v\}$
[V' is the vertices already visited]
Put v on S
[S is a stack]
$u \leftarrow v$
repeat while $S \neq \emptyset$
if $A(u) - V' \neq \emptyset$
then Choose $w \in A(u) - V'$
visit w
$V' \leftarrow V' \cup \{w\}$
Put w on stack
$u \leftarrow w$
else $u \leftarrow \text{top}(S)$
endfor
endwhile

Binary Trees

In a binary tree, each node has at most two children (i.e., has outdegree at most two).

- We call one of them the left child and the other the right child.

Binary trees are useful because:

- Many things (like sorting, arithmetic evaluation, etc.) can be expressed as binary trees
- because each node has at most two children, they can be represented efficiently in a computer.
Traversing Binary Trees

Three standard methods:

- **Preorder traversal:**
 - Process the root
 - Traverse the left subtree (by preorder)
 - Traverse the right subtree (by preorder)

- **Inorder traversal:**
 - Traverse the left subtree (by Inorder)
 - Process the root
 - Traverse the right subtree (by Inorder)

- **Postorder traversal:**
 - Traverse the left subtree (by Postorder)
 - Traverse the right subtree (by Postorder)
 - Process the root

Example

<table>
<thead>
<tr>
<th>Preorder</th>
<th>Inorder</th>
<th>Postorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Algorithm for Preorder Traversal

Input $G(V, E)$

Algorithm Preorder

```plaintext
procedure traverse(u)
  process u
  if u has left child lc then traverse(lc)
  if u has right child rc then traverse(rc)
endproc
traverse(root)
```

Spanning Trees

A **spanning tree** of a connected graph $G(V, E)$ is a connected acyclic subgraph of G, which includes all the vertices in V and only (some) edges from E.

Think of a spanning tree as a “backbone”; a minimal set of edges that will let you get everywhere in a graph.

- Technically, a spanning tree isn’t a tree, because it isn’t directed.
Constructing a Spanning Tree

Theorem: Every connected graph has a spanning tree.

Proof: Do the obvious thing: start a some node and grow the tree. The following algorithm does it.

Input $G(V, E)$ [a connected graph]

Algorithm SpanTree

Choose a vertex v in G

$V' \leftarrow \{v\}$ [Initialize spanning tree $T(V', E')$]

$E' \leftarrow \emptyset$

repeat while $V' \neq V$

Pick $c \in V'$ and $c' \in V - V'$ such that $\{c, c'\} \in E$

$V' \leftarrow V' \cup \{c'\}$

$E' \leftarrow E' \cup \{c, c'\}$

endrepeat

Output $T(V', E')$

Why does this work?

- After each iteration of the loop, T is a tree which spans the subgraph containing the vertices in V'.
- If $V' \neq V$, you can always find a new vertex to add to V', since G is connected.

Minimum Spanning Trees

If we have weights on the edges, we often want to find a spanning tree with minimum weight. A slight modification of the previous algorithm does it.

Input $G(V, E)$ [a connected graph]

$w(e)$ for all $e \in E$ [Weights on edges]

Algorithm MinSpanTree

Choose a vertices v, v' in G

such that $\{v, v'\}$ has minimal weight

(break ties arbitrarily)

$V' \leftarrow \{v, v'\}$ [Initialize spanning tree $T(V', E')$]

$E' \leftarrow \{v, v'\}$

repeat while $V' \neq V$

Pick $c \in V'$ and $c' \in V - V'$ such that $\{c, c'\} \in E$

and $\{c, c'\}$ has minimal weight

$V' \leftarrow V' \cup \{c'\}$

$E' \leftarrow E' \cup \{c, c'\}$

endrepeat

Output $T(V', E')$

MinSpanTree: Correctness

For simplicity, suppose the edges weights are all unique.

Lemma: If the vertices of $G(V, E)$ are divided into two disjoint sets V_1 and V_2, then any minimum spanning tree of G contains the minimum weight edge e connecting a vertex in V_1 to a vertex in V_2.

Proof (sketch): Suppose not. Then there is a minweight spanning tree T that doesn’t contain e. Add e to try. There must now be a cycle containing e. Take away some other edge e' that a “bridge” between V_1 and V_2. This gives you a spanning tree T' with less weight than T. That’s a contradiction.

Proof of Algorithm’s Correctness: At every stage, we’re adding the edge of minimum weight between the vertices in V' and those in $V - V'$, so these edges must all be on the spanning tree.
Game Trees

Trees are particularly useful for representing and analyzing games.

Example: *Daisy* is a game where players alternate picking petals from a daisy. A player gets to pick 1 or 2 petals. Whoever picks the last one wins. (There's another version where whoever takes the last one loses; both get analyzed the same way.)

Here's the game tree for 4-petal daisy: