
Bali Types in your compiler
A how to

Things to consider

• Categories of Types:

▫ Type “Signatures” (or Archetypes)

 Primitive types

 Integer

 Boolean

 Character

 Function types

 Class Types

 (There are NOT in part 3)

▫ Pointer types

A bali example:

• class Entry

• {

• int main()

• {

• my int a1;

• my int* a2;

• }

• char c(int a, boolean* b)

• {

• }

• }

The symbol tables

• Not considering class symbol
tables (part 3)

• Global Symbol Table:

▫ Int type, Boolean type, Char
type

▫ ReadInt, ReadChar,
ReadString

▫ “Functions”

 c

 main

• Symbol Table for “main”

▫ a1 -> (int, SO = 2)

▫ a2 -> (int*, SO = 3)

• Symbol Table for “c”

▫ a -> (int, SO -2)

▫ b -> (boolean*, SO= -1)

Symbol tables ARE mappings!

• What are we mapping from?

▫ Strings

• What are we mapping to?

▫ Symbols!

• What can we map?

▫ Archetypes (eg: int, boolean,
CustomClass)
BUT NOT: pointers!!

▫ Variables

▫ Functions

▫ “Built-In-Special” variables
(eg: ReadChar)

Creating a type hierarchy

Symbol

Variable Function “Built-In” Archetype

Class
“Archetype”

Delegate
“Archetype”

Suggestion: use Enums to differentiate known compile time differences?
Also: Where do pointers fit in? Create a new class (eg: Type) that references an
“Archetype” and has a field to denote the “pointer level”.

What is a Delegate Archetype?

• Primitive types can be
represented as Simple
Archetypes (ie: by setting the
type to some enum)

▫ There is no other information
that we need to know about
primitive types

• For Functions/Delegates?

▫ Return Type

▫ Argument Types

 Number of arguments

• For Classes

▫ Field Members

▫ Methods

Symbol Tables for functions

• Functions have their own
symbol tables

• But the first block can not have
variable names that conflict
with function parameters

• Function and first block
“share” a symbol table?

• Solutions:

▫ All functions have a SINGLE
initial block

▫ Have the function put the
arguments into that initial
block’s symbol-table

Different “strokes”(symbol tables) for

different “folks” (AST nodes)
• Different types of AST Nodes

do different things

▫ eg: They print out different
SaM code

• Different Symbol tables need
to do different things

▫ eg: For Blocks, the Symbol
Table might “automatically”
number the stack offset for
variables.

▫ You might need to use a
different offset when doing
classes

▫ Or no numbering at all for the
global symbol table?

• Solutions:

▫ Can create different symbol
tables that do different things
when added to.

▫ Do you ever have to remove
from a symbol table?

 NO!!

▫ Also: Parameters are
numbered differently in the
symbol table than variables

▫ Only certain types of symbols
can go in certain symbol
tables (eg: “Built-Ins” can’t go
in a Block’s Symbol Table)

Working with nested scopes
• AST Nodes that have scope (or

create a dedicated symbol
table)

▫ Global (eg: Program)

▫ Class (Not for this part)

▫ Method (though might use
the block’s symbol table)

▫ Block

• Since the Method uses the
block’s symbol table, we need
only consider blocks

• Solutions:

▫ Allocate variables “on
demand”

▫ If no return statement, just
de-allocate variables at end of
block (ADDSP)

• Solutions:

▫ Can’t conditionally allocate
variables in a Block’s scope,
except via “Return
Statement”

▫ For Return (in nested block)

 Keep track of variable
allocations at the “method”
level

 Before jumping to “end of
function”, ADDSP the
number of variables
allocated at the method level

 At the end of each block,
subtract variable allocation
of block from the method
level

 DON’T include parameters

AMS Demo and Questions

