
CS212 GBA
Memory

Spring 2008

1 Sprite Attributes In Depth

In order to see what all the possibilities for the usage of sprites are, we can look again to our header files for
the definitions of the various sprite options. But before we can do that we must know what options each
attribute is associated with. You should be aware we will focus on regular sprites, and not rotation and
scaling sprites. When in rotation and scaling mode, the sprite attributes have slightly different meanings.

1.1 Attribute 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shape Pal. Mode Mosaic Alpha Double Rotation Y-coordinate

• Bits 0-7: Sets Y-coordinate of the sprites. This is the Y-coordinate of the upper left corner of the sprite.
These values wrap around the size of the screen in memory (256 pixels)

• Bit 8: Turns rotation and scaling on or off.

• Bit 9: Sets the sprite to be double its size.

• Bits 10-11: Controls transparency of the sprite against the background. You likely won’t need this in
the scope of this course.

• Bit 12: Enables mosaic for this sprite

• Bit 13: Sets the palette mode, either COLOR_16 or COLOR_256. If COLOR_16 we must set choose a
palette in arribute 3.

• Bits 14-15: Sets the shape of the sprite. The possible shapes are SQUARE, TALL, WIDE. These bits are
used with the form from attribute 1 to control the overall appearance of the sprite. Refer to the table
in 1.4

1.2 Attribute 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Size Vertical Flip Horizontal Flip Not Used X-coordinate

• Bits 0-8: Set the X-coordinate of the sprite. This it the X-coordinate at the upper left corner of the
sprite. Note that is this is actually 9 bits, so that the values wrap around on twice the size of the screen
(512 pixels)

• Bits 9-11: These bits would be used in rotation.

• Bit 12: Sets a horizontal flip on the sprite on screen.

1

• Bit 13: Sets a vertical flip on the sprite on screen.

• Bits 14-15: Sets the size of the sprite on screen. This combined with the value of shape in attribute 0
controls the overall appearance of the sprite on screen. Refer to the table in 1.4

1.3 Attribute 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Palette Number Priority Sprite Number

• Bits 0-9: Location of the sprite graphic data in memory. Note that when using a 256 color palette
each sprite requires 64 bytes. Since graphic memory is allocated in 32 byte blocks, a 256 color sprite
effectively uses two slots.

• Bits 10-11: Sets the priority of the layering of this sprite with other sprites. 0 is the highest priority.

• Bits 12-15: Sets the palette of the sprite if you are using 16 color palettes.

1.4 Sprite Shape and Size

Determining what shape and size you should use is dependent on the game that you are making, but you
should be aware of the effects it has on your memory usage. The obvious consequence, is when you are
using a larger sprite, you are using more memory to store that sprite. Consider the possibility of using the
SIZE_DOUBLE flag, as well as stretching provided by the WIDE and TALL shapes.

Attribute 0 Attribute 1 Size Bytes Bytes
(Bits 14-15) (Bits 14-15) per sprite per sprite

(256 colors) (16 colors)

SQUARE SIZE_8 8X8 64 32
SQUARE SIZE_16 16X16 256 128
SQUARE SIZE_32 32X32 1024 512
SQUARE SIZE_64 64X64 4096 2048

TALL SIZE_8 8X16 128 64
TALL SIZE_16 8X32 256 128
TALL SIZE_32 16X32 512 256
TALL SIZE_64 32X64 2048 1024

WIDE SIZE_8 16X8 128 64
WIDE SIZE_16 32X8 256 128
WIDE SIZE_32 32X16 512 256
WIDE SIZE_64 64X32 2048 1024

1.5 Attribute Flags

We have provided definitions of the useful flags for setting sprites attributes. They are just hex numbers to
set values to specific bit positions. If you are having trouble understanding why these numbers are what
they are, or how to use them, pleaes consult a TA.

From gba_sprites.h:

2

// Attribute 0

#define ROTATION_FLAG 0x0100

#define SIZE_DOUBLE 0x0200

#define MODE_NORMAL 0x0000

#define MODE_TRANSPARENT 0x0400

#define MODE_WINDOWED 0x0800

#define MOSAIC 0x1000

#define COLOR_16 0x0000

#define COLOR_256 0x2000

#define SQUARE 0x0000

#define WIDE 0x4000

#define TALL 0x8000

// Attribute 1

#define ROTDATA(n) (n << 9)

#define HORIZONTAL_FLIP 0x1000

#define VERTICAL_FLIP 0x2000

#define SIZE_8 0x0000

#define SIZE_16 0x4000

#define SIZE_32 0x8000

#define SIZE_64 0xC000

// Attribute 2

#define PRIORITY(n) ((n)<<10)

#define PALETTE(n) ((n)<<12)

From these, combined with what you’ve learned about bitfields, it should start becoming clear just how
you would set a specific option. For example, if you had a 16x16 sprite (in the 2nd position in VRAM) with
a 256 color palette, that you wanted to be flipped horizontally, and to appear at the coordinates (22,44) you
would do something like the following:

sprites [0]. attribute0 = COLOR_256 | SQUARE | 44;

sprites [0]. attribute1 = SIZE_16 | 22;

sprites [0]. attribute2 = 2;

2 Backgrounds

2.1 Palettes

Similar to the sprites, the backgrounds

2.2 Text Backgrounds

Each background (BG0-BG4) has a register that controls a variety of options that define the behavior and
appearance of the background.

3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Size n/a Screen Base Block Palette Mode Mosaic n/a Char Base Block Priority

• Bits 0-1: Set the priority for this background. 0 is the highest priority.

• Bits 2-3: Select which character base block tile data for this background is stored in.

• Bits 4-5: Not used

• Bit 6: Enable mosaic mode for this background.

• Bit 7: Choose the palette mode for this background. Either one 256 color palette, or 16 16 color palettes.

• Bits 8-12: Select the screen base black for this background. This controls where we store the map data
for the tiles on screen.

• Bit 13: Not used

• Bit 14-15: Choose the size of the background.

Once you set this register, and load tile graphics into memory (the character base block, specifically), you
have to set up the screen base block entries, which controls the appearance of tiles on screen.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Palette Vertical Flip Horizontal Flip Tile Number

• Bits 0-9: Choose which tile in the character base block this position in the screen should display.

• Bit 10: Flip this screen position’s tile horizontally.

• Bit 11: Flip this screen position’s tile vertically.

• Bit 12-15: If we are using the 4 bit tile palette mode, then these bits select which palette this tile should
use.

2.3 Background Modes

There are five background modes, which provide different combinations of the three different background
formats available (bitmapped, text, and rotation/scaling) to the GBA on the 4 available backgrounds. We
will be concerned mostly with text (tiled) backgrounds in this course. The modes for tiled backgrounds are
as follows:

• Mode 0: All four backgrounds will be text backgrounds.

• Mode 1: Only three backgrounds are usable in this mode. Backgrounds 0 and 1 are text backgrounds,
background 2 is a rotation/scaling background.

• Mode 2: Backgrounds 0 and 1 are text, 2 and 3 are rotation/scaling.

4

