
1

Pointers

Week 9
CS 212 – Spring 2008

Reminder

! Project Part 3
" Design Document is due on Thursday, March 27
" Part 3 code is due Thursday, April 10

What to Put in Your Design Document
! Specify each class

" For each class, specify the class’s methods
For each method, specify

! Its arguments (i.e., its interface)
! Its preconditions (if any)
! Its postconditions (i.e., what the method does)

! Specify how the classes interact
" Diagrams can be useful here, but aren’t required

UML (Unified Modeling Language) can be used, but informal
diagrams are OK, too

! Expected length of design document
" One page ⇒ probably too short
" Ten pages ⇒ definitely too long

Motivating Dynamic Allocation
! Some programming matches well with a Stack

" Temporary values used to evaluate an expression
" Local variables
" Stack frames for function calls

! But not everything we want to do has stack-like behavior
" Maintain a linked list during insertions and deletions
" A function to read a file and return the resulting graph

(vertices & edges)
" Build a binary search tree

! We need a place to store an arbitrary number of items, each
of arbitrary size

Dynamic Allocation

! Heap
" Place for dynamic allocation
" Allows you to store large “things” without having to

push/pop the Stack

! Creating items in the Heap
" Claim a chunk of Heap-memory
" Store address of that chunk
" Use that address to access your item
" When done with item, eliminate it from Heap, making

chunk of Heap-memory available for re-use
Heap

Stack

Stack vs. Heap
! Confusingly, Stack and Heap

are terms used both
" for data structures and
" for operating systems

! Typically have Stack start
at one end of memory, Heap
start at the other end

" Stack and Heap collide
implies Out-Of-Memory
error

Memory

0

maxMem

2

SaM’s Heap Using SaM’s Heap

! SaM memory allocation: MALLOC
" Pops top of Stack
" Allocates that number of memory cells in heap
" Pushes the address of the first heap-cell onto stack

! SaM example:
PUSHIMM 1 // 1 cell to allocate
MALLOC // pop 1 and allocate 1 cell in heap
PUSHIMM 3 // 3 cells to allocate
MALLOC // pop 3 and allocate 3 cells in heap
PUSHIMM 0 // no cells to allocate
MALLOC // pop 0 and allocate no cells in heap
FREE // deallocate last "object"
FREE // deallocate second "object"
FREE // deallocate first "object"
PUSHIMM 0 // push dummy return value
STOP // cease execution

Allocating/Deallocating Heap Memory

! In C
" Allocating memory

malloc: allocates a block of
memory (no initialization)

calloc: allocates a block of
memory and clears it

realloc: resizes a
previously allocated block
of memory

" Deallocating memory
free(p): deallocates block

of memory that p points to
Beware of dangling

pointers !

! In Java
" Allocating memory

The new operator
! allocates a block of

memory
! calls the specified

constructor
" Deallocating memory

Java uses an automatic
garbage collector

! frees any allocated
memory that is no
longer in use

Can choose to run it using
the System.gc method

Garbage Collection
! Want to keep any object

that can be reached from
program’s variables

" Either directly or through
other objects that can be
reached

" Program’s variables =
anything in the call stack

! Once “not-in-use” objects
are found

" Can reclaim the memory
for re-use

" Can also compact memory
I.e., move all the “in-use”

objects to another
memory block (without
gaps between objects)

Garbage Collector Schemes
! Mark and Sweep

" Mark every object as “not-in-
use”

" Starting from the call stack,
visit every reachable object,
marking it as “in-use”

" Everything still marked “not-
in-use” can be reclaimed

! Reference Counting
" Every object keeps a count of

how many pointers reference
it

" When count is zero, memory
can be reclaimed

" Problem: cycles!

! For either scheme
" Can “stop the world”
" Can interleave (i.e., take turns)
" Can run concurrently

! Java’s current garbage
collector

" A 2-tier scheme (old
generation; new generation)

" A mark-and-sweep method
" With compaction

! Java’s garbage collection
scheme has changed as new
Java versions were released

Pointers
! Java hides pointers (but

they’re there)
! Pointers are used explicitly

in C (and many other
languages)

! A pointer is basically an
address (of a cell in
memory)

" In Java, these addresses
refer only to cells in the
Heap

" In C, these addresses can
refer to any cell

! Pointer operations
" Dereferencing: identify

the thing that is pointed to
" Assignment: copy pointer

values
" Comparison:

equality/inequality of
pointers

" Dynamic allocation: a “new”
block of memory

" Deallocation: return a block
of memory to the system

" Arithmetic: used in C
(mostly for arrays)

3

Pointers in C
! The code

int *p;
declares a variable p that
can point to an integer

" Immediately after
declaration, it doesn’t point
at anything in particular

! This code
int i, j, *p;
p = &i;

causes p to point at i

! * is the indirection operator
! & is the address operator

! These assignments are the
same

j = *&i;
j = i;

! These are the same, too
i = 4;
*p = 4;

?p i 4p i

C Pointer Examples
int i, j, *p, *q;
p = &i;
q = p;

*p = 44;

*q = 129;

q = &j;

What about
*q = *p; vs. q = p; ?

44 i
q

p

? i
q

p
129 i

q

p

129 i

q

p

? j

Pointers and Arrays in C
! A pointer can point at an

array
int a[4], *p, *q;
p = &a[0];

! You can use pointer
arithmetic to access array
elements

*p = 54;

! Addition works
q = p + 2;
*q = 63;

! So does subtraction
p = &a[3];
p = p – 2;
*p = 67;

p

a

0 1 2 3

54

p

a

0 1 2 3

54 63

p

a

0 1 2 3

54 67 63

p

a

0 1 2 3

q

Oddities of Pointers and Arrays in C
! An array name can be used

as a pointer
int a[4];
*a = 7;
*(a+1) = 77;

! A common way to sum the
elements of an array

for (p = a; p < a+N; p++)
sum += *p;

! These two references are
the same:

a[i]
*(a + i)

! Also, strangely, these two
are the same

a[i]
i[a]

because both are equivalent
to *(a + i)

! Arrays and pointer are
nearly equivalent, but you
can’t assign to an array
name

Pointers in Java
! Java doesn’t use pointers in

an explicit way
" Java implicitly uses

pointers (called references
in Java)

" Every variable that does
not hold a primitive type
holds a reference (a
pointer) to an Object

! There is no Java equivalent
to the pointer arithmetic
typically done in C

! In Java
Thing x;

declares that x holds a
reference to an Object of
type Thing

! The code
x = new Thing(...);

reserves space for an
Object of type Thing in the
Heap, initializes the Object,
and places a reference to
the object in x

a Thingx

Where do Arrays Live?

! Bali arrays work much like Java arrays
" Arrays are stored in the Heap

Array size is specified when array is created (via new in
Java)

! Other choices
" Arrays are allocated before the program runs (e.g., as in

early Fortran)
Implies that each array is of fixed size

" Arrays are stored on the Stack
Implies that array-size must be known when array is

declared

4

Runtime Data Areas
! For SaM

" Code
" Stack
" Heap
" Registers

! For Java
" Method area
" Java stacks
" Heap
" PC registers
" Native method stacks

from: http://www.artima.com/insidejvm/ed2/jvm2.html

JVM Runtime Data Areas
! Method area (stores data

for each type)
" Information about the

type (e.g., name, modifiers,
superclass, etc.)

" Constant pool for the type
Any constant used in the

type’s code (e.g., 5 or ‘x’
or 1.414)

" Field & method information
for the type (including the
code for each method)

" Class variables (i.e., static
fields)

! Java stacks
" Stores stack frames
" But keeps multiple stacks

because Java is
multithreaded

! Heap
" Stores objects (including

instance variables)
! PC registers

" One PC register for each
thread

! Native method stacks
" A work area for methods

written in a language other
than Java

GBA Runtime Data Areas

! BIOS (Basic Input/Output System)
" System stuff; normally inaccessible

! Work RAM
" Workspace; variables are stored here

! Control Registers
" Setting these alters the way the game is

displayed
! Palettes

" Used to compactly represent colors
! Video display

" Data here is displayed on the game-screen
! Sprites

" These are small images that can be
layered on top of the video display

! Game code

BIOS

Memory Map (Simplified)

Work RAM

Control Registers

Palettes

Video Display

Sprites

Game Code

