
1

Software Tools

Week 7
CS 212 – Spring 2008Top 20 Tools of All Time

(http://uk.gizmodo.com/)

Programming Language as a Tool

! Use the language that best fits your task

! Think small
" Write little programs that test various concepts
" Test them!
" Comment them!
" Build collections of these little programs
" Reuse your own code

Languages for Different Domains
! General purpose

" Examples: Lisp, Algol, PL/1,
Scheme, Java, Python

! Systems programming
" Emphasis on efficiency and

tight control of data
structures

" Examples: C, C++, Forth,
Modula-2

! Scripting
" Examples: Unix shell, Perl,

Python, Ruby, Tcl

! Concurrent/distributed
processes

" Control of multiple threads
" Examples: Ada, Oz, Smalltalk,

Java
! Educational

" Examples: Basic, Haskell,
Pascal, Python, Scheme,
Smalltalk

! Various other domains
" Discrete event simulation:

Simula
" Web scripting: Javascript
" Realtime applications: Ada
" Text processing: Snobol, Perl
" Printing: Postscript
" …

Scripting Languages
! A script is a sequence of

common commands made into a
single program

" Unix uses shell scripts
" The shell is the interactive

interface to Unix
" You can combine commands

from the Unix shell to create
programs

! A scripting language is usually
" Easy to learn
" Interpreted instead of

compiled

! Example scripting languages:
Unix shell, Python, Perl,
Tcl (Tool command language)

! Some Python code:

class Stack (object):
def __init__ (self):

self.stack = []
def put (self, item):

self.stack.append(item)
def get (self):

return self.stack.pop()
def isEmpty (self):

return len(self.stack) == 0

A Programming Language Controversy
! “Go To Statement Considered

Harmful”
" Edsger Dijkstra, Communications

of the ACM (March 1968)

! Sparked long-running discussion on
whether “go to” is necessary or
desirable

" Proponents of “go to” presented
examples where code was more
readable using “go to”

" At the time
No break
No continue
No exceptions

! Led to concept of structured
programming

" Idea: Code is clearer if we
restrict ourselves to just a
few control structures

" Loops have single entry, single
exit

Programming Language Weirdness
! Weird languages

" Whitespace
Only spaces, tabs, and newlines are significant
A great language for security since a program can be printed onto plain paper

and stored without worrying about an adversary reading the code ☺
" var'aq

Based on the grammatical structure of the Klingon language

! Weird concepts
" Polyglot code

Code that is valid for multiple languages
Usually takes advantage of the different ways that comments are indicated

in the different languages
" Quine

A program whose only output is its own source code
Not considered valid to use the empty program

2

Integrated Development Environments
! An IDE usually includes

" Source code editor (usually
with color highlighting)

" Compiler or interpreter
" Tools for “build

automation” (i.e., keeps
track of what needs to be
recompiled)

" Debugger
" Class browser (for

languages with classes)

! Examples: DrJava, Eclipse
" In Eclipse: As you type,

gives you list of options +
documentation

! You should know how to use
a debugger!

" Place breakpoints
" Step through code

Step over
Step into
Step out of…

" Examine current call-stack
" Examine values of active

variables
Some debuggers allow you

to change a variable value

! Debuggers are usually much
more effective than placing
print-statements

Unix
! Original version by Ken Thompson

(Bell Labs) in 1969

! An interactive, multi-user
operating system (not the first
such system, but an early one)

! Unix is closely tied to the
development of C

" Unix was originally written in PDP-
7 Assembly Language

" Then in B
" Then in C
" B and C were basically created to

write Unix

! Philosophy
" Almost everything is a text file
" Little programs (utilities) to do

little tasks
" Connect programs with pipes &

redirection
% who | sort | lpr
Print an alphabetical list of who is

active on the system

! Linux is an open software version
of Unix

" Since 1991
Linus Torvalds (the kernel)
Richard Stallman (GNU)

" Widely used for high-performance
computing

! Mac OS X is built on Unix

Regular Expressions
! Common goal: search/match/do

stuff with strings

! Idea: use special strings to
match other strings

" Some characters are meta-
characters

! Regular expressions are closely
related to finite state
automata (CS 381/481)

! Some of the rules for regular
expressions

" A regular character matches
itself

" A . matches any character
" * implies 0 or more

occurrences (of preceding
item)

" + implies 1 or more
occurrences

" \ implies following character is
treated as a regular character

" […] matches any one
character from within the
brackets; - can be used to
indicate a range

! A regular expression in Java
"((\\.[0-9]+)|([0-9]+\\.[0-9]*))"

Makefiles
! Used when

compiling/recompiling a large
system (many interdependent
files)

" Checks which files have
changed and only recompiles
those that are necessary

" Because of dependencies,
more than just the changed
files can need to be
recompiled

" Also keeps track of compiler
options

! Why not recompile everything?
" Expensive
" Order of compilation can be

important

! Once you have a makefile
" You recompile whatever is

necessary by typing make

! To create a makefile
" Common strategy is to find

some examples and modify
them

" There are automated tools for
building makefiles

! Modern IDEs often provide
tools for managing the build
process

Memory Management
! Modern programs are

" Long running
" Make dynamic use of

memory

! Garbage collector
" Some languages (e.g., Java,

C#) use a garbage
collector to reclaim unused
memory

" Other languages (e.g., C,
C++) require programmers
to manage their own
memory

! Manual memory management
bugs

" Dangling pointers
Memory has been freed,

but part of the code is
still trying to use it

" Memory leaks
Memory that is no longer

used, but is not freed

Long running program ⇒
run out of memory

! There are tools to help
catch such bugs

" E.g., purify for C, C++

Garbage Collection
! Want to keep any object

that can be reached from
program’s variables

" Either directly or through
other objects that can be
reached

" Program’s variables =
anything in the call stack

! Once “not-in-use” objects
are found

" Can reclaim the memory
for re-use

" Can also compact memory
I.e., move all the “in-use”

objects to another
memory block (without
gaps between objects)

3

Garbage Collector Schemes
! Mark and Sweep

" Mark every object as “not-in-
use”

" Starting from the call stack,
visit every reachable object,
marking it as “in-use”

" Everything still marked “not-
in-use” can be reclaimed

! Reference Counting
" Every object keeps a count of

how many pointers reference
it

" When count is zero, memory
can be reclaimed

" Problem: cycles!

! For either scheme
" Can “stop the world”
" Can interleave (i.e., take turns)
" Can run concurrently

! Java’s current garbage
collector

" A 2-tier scheme (old
generation; new generation)

" A mark-and-sweep method
" With compaction

! Java’s garbage collection
scheme has changed as new
Java versions were released

Use of Standard Data Structures
! Packages for widely-useful

data structures
" Java Collections

Framework
" C++ STL (Standard

Template Library)

" Provide tools for
Sorting & searching
Iteration
List
Set
Map (or dictionary)
Stack
Queue
Priority Queue

! For example, Java provides
" Interfaces

List, Map, Set
" Classes

ArrayList, LinkedList,
HashMap, TreeMap,
HashSet, TreeSet

" Algorithms
Arrays.sort,

Arrays.search,…

Version Control
! Allows you to keep track of

changes for a large project
" Can back up to old version

if changes create problems
" Multiple contributors can

work on the system

! SVN (Subversion)
" An alternative to CVS

! CVS (Concurrent Version
System)

" Open source
" Widely used tool for

version control
" Maintains a history of all

changes made
" Supports branching,

allowing several lines of
development

" Provides mechanisms for
merging branches back
together when desired

Profiling Tools
! People are notoriously bad at predicting the most

computationally expensive parts of a program
" Rule of thumb (Pareto Principle): 80% of the time is spent in

20% of the code
" No use improving the code that isn’t executed often
" How do you determine where your program is spending its time?

! Part of the data produced by a profiler (Python)
ncalls tottime percall cumtime percall filename:lineno(function)

2521 0.227 0.000 1.734 0.001 Drawing.py:102(update)
7333 0.355 0.000 0.983 0.000 Drawing.py:244(transform)
4347 0.324 0.000 4.176 0.001 Drawing.py:64(draw)
3649 0.212 0.000 1.570 0.000 Geometry.py:106(angles)
56 0.001 0.000 0.001 0.000 Geometry.py:16(__init__)

343160 9.818 0.000 12.759 0.000 Geometry.py:162(_determinant)
8579 0.816 0.000 13.928 0.002 Geometry.py:171(cross)
4279 0.132 0.000 0.447 0.000 Geometry.py:184(transpose)

! Java has a built-in profiler (hprof); there are many others

More Advanced Profiling
! Need additional profiling

tools for applications that
" Are multithreaded
" Use multiple cores

! Example:
VTune Performance
Analyzer (from Intel)

" Can monitor
Memory usage
Performance during file

I/O
Thread overhead and

synchronization
Load balancing
Idle time
Communication

bottlenecks

Documentation Generators

! Comments (esp. specifications) are as important as
the code itself
" Determine successful use of code
" Determine whether code can be maintained
" Creation/maintenance = 1/10

! Documentation belongs in code (or as close to it as
possible)
" “Code evolves, documentation drifts away”
" Put specs in comments next to code when possible
" Need to document a complicated method?

Write a paragraph at the top
Or break method into smaller, clearer pieces

4

Example Documentation Generator: Javadoc

! An important Java
documentation tool

! Extracts documentation from
classes, interfaces

" Requires properly formatted
comments

! Produces browse-able,
hyperlinked HTML web pages

Java source code
(many files)

Linked HTML web
pages

javadoc /**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {

this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {

this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();

}

How Javadoc is Produced
indicates Javadoc comment

Javadoc keywords

can include HTML

Some Useful Javadoc Tags

@return description
" Use to describe the return value of the method, if any
" E.g., @return the sum of the two intervals

@param parameter-name description
" Describes the parameters of the method
" E.g., @param i the other interval

@author name
@deprecated reason
@see package.class#member

{@code expression}
" Puts expression in code font

A List of Software Tools
(from Wikipedia)

! Revision control: Bazaar, Bitkeeper,
Bonsai, ClearCase, CVS, Git, GNU arch,
Mercurial, Monotone, PVCS, RCS, SCM,
SCCS, SourceSafe, SVN, LibreSource
Synchronizer

! Interface generators: Swig
! Build Tools: Make, automake, Apache

Ant, SCons, Rake, Flowtracer
! Compilation and linking tools: GNU

toolchain, gcc, Microsoft Visual Studio,
CodeWarrior, Xcode, ICC

! Static code analysis: lint, Splint
! Search: grep, find
! Text editors: emacs, vi
! Scripting languages: Awk, Perl, Python,

REXX, Ruby, Shell, Tcl

! Parser generators: Lex, Yacc, Parsec
! Bug Databases: gnats, Bugzilla, Trac,

Atlassian Jira, LibreSource
! Debuggers: gdb, GNU Binutils, valgrind
! Memory Leaks/Corruptions Detection:

dmalloc, Electric Fence, duma, Insure++,
Purify, Aard

! Code coverage: GCT, CCover
! Source-Code Clones/Duplications

Finding: CCFinder
! Refactoring Browser (e.g., Eclipse)
! Code Sharing Sites: Freshmeat, Krugle,

Sourceforge, ByteMyCode, UCodit
! Source code generation tools
! Documentation generators: Doxygen,

help2man, POD, Javadoc, Pydoc/Epydoc

! No hammer? No screw or
screwdriver?

! Why the rifle and not the
cannon? Why the watch and
not the clock?

! No electricity?

