
1

Lexical Analysis
and

Parsing

Week 3
CS 212 – Spring 2008

Announcements

! Part 1 (both Compiler & GBA) is due on Friday

! Sections have been split
" GBA sections

There is a GBA section at each section time:
! M12:20, M7:30, W7:30

Location for all GBA sections: Hollister 401
" Compiler sections

Using rooms originally assigned to sections
! M12:20 Olin Hall 245
! M7:30 Upson 205
! M7:30 Upson 205

Compilers
! Basically, a compiler

" Translates one language
(e.g., Java)

" Into another
(e.g., JBC: Java Byte Code)

! Why do this?
" Idea is to translate a language

that is easy for humans to
understand into one that is easy
for a computer to understand

" This idea was initially
controversial!

! Typical compiler phases
" Lexical analysis

Breaking input into tokens
" Parsing

Understanding program’s
structure

" Optimization
Making the code more

efficient (e.g., precomputing
constant expressions, avoid
recomputing)

" Code Generation
Creating code in a simpler

language (e.g., JBC, machine
code)

Parts of a Language
! Human language

" alphabet → words → sentences → paragraphs → chapters → book
! Computer language

" alphabet → tokens → statements → program

! Both types of language have
" Syntax

Structural rules
" Semantics

Meaning

Syntax
! Remember diagramming sentences? This was syntax!

sentence → noun-phrase verb-phrase
noun-phrase → article [adjective] noun
verb-phrase → verb direct-object
direct-object → noun-phrase

! The hungry mouse ate the cheese.

article adjective noun verb article noun

noun-phrase

noun-phrase

direct-object

verb-phrase

sentence

The shiny elbow drank the automobile.

Syntax vs. Semantics
! Syntax = structure

Semantics = meaning
! Legal syntax does not imply

valid meaning

! Examples of semantic rules for
a programming language

" Variables must be declared
before use

" Division by zero causes an
error

" The then-clause is executed
only if the if-expression is
True

! It’s relatively easy to define
valid syntax (especially if we
get to invent the language)

! It’s harder to specify
semantics

! How can we specify semantics?
" Formally, using logic (axiomatic

semantics)
" Informally, using explanations

in English
" By reference to a canonical

implementation

2

Compiling Overview
! Compiling a program

" Lexical analysis
Break program into

tokens
" Parsing

Analyze token
arrangement

Discover structure
" Code generation

Create code

! For a computer language,
each phase can be
completed before the next
one begins

! Understanding a sentence
" Lexical analysis

Break sentence into
words

" Parsing
Analyze word

arrangement
Discover structure

" Understanding
Understand the sentence

! For human language, there is
feedback between parsing
and understanding

Lexical Analysis
! Goal: divide program into

tokens

! Tokens
" Individual units or words of a

language
" Smallest element in a language

that conveys meaning
" Examples: operators, names,

strings, keywords, numbers

! Tokens can be specified using
regular expressions

a* = repeat a zero or more times
a+ = repeat a one or more times
[abc] = choose one of a, b, or c
. = matches any one character

! Examples
" operator = [+ - * /]
" integer = [0123456789]+

! For the Compiler Project, we
give you the lexical analyzer (or
tokenizer)

Building a Tokenizer
! For tokens, can tell what to

do next by checking a few
characters (usually 1
character) ahead

" Example: If it starts with
a letter, it’s a word; the
word ends when you reach
a non-alphanumeric
character

" Example: If it starts with
a digit, it’s a number; if you
reach a decimal point, it’s a
floating point number,…

! Java has a class (introduced
in Java 5) java.util.Scanner

" Can recognize identifiers,
numbers, quoted strings,
and various comment styles

" This is more useful than
the earlier (Java 1.0)
java.io.StreamTokenizer

! Early computer languages
were not parsed based on
tokens

Specifying Syntax
! How do we specify syntax?

" Can use a grammar
" Can use a syntax chart

! Example grammar
" (anything in single-quotes is a

token; n and w represent a
number token and a word
token, respectively;
parentheses are used for
grouping; | indicates choice; *
indicates zero-or-more
occurrences)

" E → T ((‘+’ | ‘-’) T)*
" T → F ((‘*’ | ‘/ ’) F)*
" F → n | w | ‘(‘ E ‘)’

! Example syntax charts
(anything in a rounded box is a
token)

E

T

T

+ -

F

F

* /

()

n

w

E:

T:

F:

Grammars
! The rules in a grammar are

called productions
! Syntax rules can be

specified using a Context
Free Grammar
" All productions are of the

form V → w
" V is a single nonterminal (i.e.,

it’s not a token)
" w is word made from terminals

(i.e., tokens) and nonterminals

! In simple examples,
uppercase is used for
nonterminals, lowercase for
terminals

! Example (ε represents the
empty string):

A → ε
A → aAb

! A grammar defines a
language

" Language of example:
all strings of the form anbn

for n > 0
! CS 381 for more detail

Building a Parse Tree
! Grammars can be used in

two ways
" A grammar defines a

language
" A grammar can be used to

parse a sentence (thus,
checking if the sentence is
in the language)

" For the Compiler Project,
We give you the grammar

for Bali
The sentence is a Bali

program

! You can show a sentence is
in a language by building a
parse tree (much like
diagramming a sentence)

! Example: Show that 8+x/5
is a valid Expression (E) by
building a parse tree

" E → T ((‘+’ | ‘-’) T)*
" T → F ((‘*’ | ‘/ ’) F)*
" F → n | w | ‘(‘ E ‘)’

3

Tree Terminology
! M is the root of this tree
! G is the root of the left

subtree of M
! B, H, J, N, and S are leaves
! P is the parent of N
! M and G are ancestors of D
! P, N, and S are descendents

of W
! A collection of trees is

called a ??

M

G W

PJD

NHB S

Syntactic Ambiguity
! Sometimes a sentence has more

than one parse tree
S → A | aaB
A → ε | aAb
B → ε | aB | bB

" The string aabb can be parsed
in two ways

! This kind of ambiguity
sometimes shows up in
programming languages

if E1 then if E2 then S1 else S2

! This ambiguity actually affects
the program’s meaning

! How do we resolve this?
" Provide an extra non-grammar

rule (e.g., the else goes with
the closest if)

" Modify the grammar (e.g., an
if-statement must end with a
‘fi’)

" Other methods (e.g., Python
uses amount of indentation)

! We try to avoid syntactic
ambiguity in Bali

An Extended Example
! A simple computer language
! Each variable is a single

letter
! Just two statement types:

assignment and do

x = 1; y = 1;
do 5:

x = x * y;
y = y + 1;
end;

end.

! We can invent a grammar to
describe legal programs

" We need rules for building
expressions, statements,
and programs

" We create a Context Free
Grammar for our simple
language

The Grammar
program → statement* end .

statement → name = expression ;

statement →
do expression : statement* end ;

expression → part [(+ | - | * | /) part]

part → (name | number | (expression))

name → singleLowercaseLetter

! Notation:
" * indicates zero or

more occurrences
" [] indicates zero or

one occurrence
" (| |) indicates

choice

! What is the parse tree
for the expression
(5 * x) + 3?

Abstract Syntax Tree
! We can build a parse tree,

but an AST (Abstract
Syntax Tree) is more useful

" Idea is to show less
grammar and more meaning

expression

part

number

5

name

x

part 3

part

number

+

* 3

5 x

Abstract Syntax Tree
Parse Tree

+

*

expression

part

()

Designing the AST
! We can invent how the AST

should look for each of our
language constructs

x = 1; y = 1;
do 5:

x = x * y;
y = y + 1;
end;

end.

=

x 1

x

=

x

*

y

do

exp s1 sn. . . .

4

Recursive Descent Parsing
! Idea: Use the grammar to

design a recursive program
that builds the AST

! To parse a do-statement,
for instance

" We look for each terminal
(i.e., token)

" Each nonterminal (e.g.,
expression, statement) can
handle itself—recursively

! The grammar tells how to
write the program

public ASTNode parseDo {
Make sure there is a “do” token;
exp = parseExpression();
Make sure there is a “:” token;
while (not “end” token) {

s = parseStatement();
stList.add(s);
}

Make sure there is an “end” token;
Make sure there is a “;” token;
return DoNode(exp, stList);

}

In Practice
! We define a parent class

ASTNode

! DoNode can be a subclass

! Each possible node in the
AST will have its own
subclass of ASTNode

! Some of the grammar’s
nonterminals don’t
correspond to nodes in the
AST

" E.g., statement,
expression, part

! For these we don’t want to
create classes

" But we do need recursive
methods to parse these
nonterminals

Does Recursive Descent Always Work?

! There are some grammars
that cannot be used as the
basis for recursive descent

" A trivial example (causes
infinite recursion):

S -> b
S -> Sa

! Can rewrite grammar
S -> b
S -> bA
A -> aA
A -> a

! For some constructs
Recursive Descent is hard
to use

" Can use a more powerful
parsing technique (there
are several, but not in this
course)

Code Generation
! The same kind of recursive

viewpoint can drive our code
generation

" This time we recurse on
the AST instead of the
grammar

" Write the code for the
root node; the subtrees
can take care of
themselves

class AssignmentStatement extends
ASTNode {

String var; ASTNode exp;

public AssignmentNode (var, exp) {
this.var = var;
this.exp = exp;

}

public void generate () {
exp.generate();
// Exp result is left on stack
Generate code to move top
of stack into mem-location of
var;

}
}

