Input/Output in Java

September 9, 2018

Contents

1 Overview 1

2 Types of data 2
21 Binarydata. 2
22 Textdata e 2
2.3 Formatteddata 3
24 Buffering 4

3 Input sources 4
3.1 Command linearguments 4
3.2 Console (userinput), 5
33 Filesystem 6
34 Resourcefiles 6

4 Output destinations 6
41 Console e 6
42 Errormessagest 7
43 Filesystem o 7

5 Examples 7
51 Reading the command line arguments 7
52 Printingoutuserinput L. 7
53 Printingoutatextfile. 8
54 Copyingatextfile. 8
55 Copyingabinaryfile 9
5.6 Printing out a text resourcefile 9

1 Overview

This note covers how to get data into and out of your Java program. The way
you do this depends on the type of the data, the source/destination, and the
application.

2 Types of data

2.1 Binary data

Ultimately, all data is just binary: 0’s and 1’s. When saving to a file or trans-
mitting over a network, that is what is saved or transmitted. You can view any
file in its raw binary form using the Unix facility hexdump on a Mac or HexView
on Windows. This shows the bytes in the file in hexadecimal (base-16) format.

> more test.txt

This is a text file.

It contains two lines.

> hexdump test.txt

0000000 54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
0000010 69 6¢ 65 2e Oa 49 74 20 63 6f 6e 74 61 69 6e 73
0000020 20 74 77 6f 20 6¢c 69 6e 65 73 2e Oa

000002c

>

Java programs can read or write binary data as a stream of raw bytes with-
out any processing. The lowest-level facilities for this are java.io.InputStream
and java.io.OutputStream. These provide basic mechanisms for reading and
writing data one byte at a time or an array of several bytes at a time.

The classes InputStream and OutputStrean are abstract classes, which means
they cannot be instantiated directly. One must instantiate them using one of
their concrete implementations. There are numerous options, depending on
the source or destination of the data: AudioInputStream, ByteArrayInputStreamn,
FileInputStream, ObjectInputStream, StringBufferInputStrean, etc.

These classes are rarely used by themselves, but are usually wrapped in
other classes that provide extra functionality, such as buffering or encoding/decoding.
More on this below.

A binary file is one containing data that is not meant to be interpreted as
text; for example, images or audio files.

2.2 Text data

Text data consists of Java strings or character streams. A string is a fixed finite
sequence of characters and is an instance of java.lang.String. A character
stream is a sequence of characters of indeterminate length, usually read from
some source such as a file or user input.

A character encoding is a translation scheme that tells how each character
is represented in memory as a sequence of bytes. The most common charac-
ters (letters, numbers, whitespace characters, common punctuation) are usu-
ally represented as one byte, but some less common characters require more
than one byte, and the representations may differ depending on the encoding.
There are several character encodings in common use, and the defaults may

https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/AudioInputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/ByteArrayInputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/FileInputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/ObjectInputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/StringBufferInputStream.html
https://docs.oracle.com/javase/10/docs/api/java/lang/String.html

vary from platform to platform. The most common ones are ISO-8859-1 (also
known as Latinl), UTF-8, and UTF-16.

For example, consider converting the string CS2112 into a sequence of bytes.
Each character has a unique identifying number that is fixed and universal, as
specified by the Unicode standard. These numbers are called code points. The
characters in the string 32112 have the following code points, listed here in
hexadecimal:'

character | code point

C 0x43
S 0x53
2 0x32
1 0x31

The code point corresponding to a character is an abstract entity. It is not the
internal representation of the character in memory. To get the representation in
memory, the code point is translated to a sequence of bytes as specified by the
character encoding. The ISO-8859-1 encoding supports only code points 0x00-
OxFF, and the translation is direct, which means that the internal representation
is a single byte and is the same as the code point. Thus the string €52112 will
be encoded as a sequence of six bytes 0x43, 0x53, 0x32, 0x31, 0x31, 0x32.

Here the translation from code points to bytes is direct, but this is not neces-
sarily so for other character encodings. For example, with the UTF-8 encoding,
a byte larger than 0x7F indicates that it is the first byte of a multi-byte sequence.

The lowest-level facilities for reading and writing streams of text data are
java.io.Reader and java.io.Writer. These provide basic mechanisms for
reading and writing text data one character at a time or an array of several
characters at a time. They do character conversion according to the platform’s
default character encoding, but perform no other formatting.

Like InputStream and OutputStream, the classes Reader and Writer are
abstract classes, which means they must be instantiated using one of their con-
crete implementations: CharArrayReader, InputStreamReader, FileReader,
StringReader, etc.

Also like InputStream and OutputStream, the Reader and Writer classes
are rarely used by themselves, but are usually wrapped in other classes that
provide extra functionality, such as buffering or further encoding/decoding.

A text file is one containing data that is meant to be interpreted as text.

2.3 Formatted data

It may be necessary to translate raw text or binary data to a desired form before
it can be used by an application. Such translation is usually done by a codec,
a coding/decoding scheme particular to the application. This may involve
specialized hardware, for example to play an audio stream or to display an
image. However, it may also apply to text data. For example, a character

IThe prefix “Ox” indicates a hexadecimal (base-16) numeral.

https://docs.oracle.com/javase/10/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/10/docs/api/java/io/Writer.html
https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/10/docs/api/java/io/Writer.html
https://docs.oracle.com/javase/10/docs/api/java/io/CharArrayReader.html
https://docs.oracle.com/javase/10/docs/api/java/io/InputStreamReader.html
https://docs.oracle.com/javase/10/docs/api/java/io/FileReader.html
https://docs.oracle.com/javase/10/docs/api/java/io/StringReader.html
https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/10/docs/api/java/io/Writer.html

stream consisting of a sequence of digits needs to be translated to a number
before you can do arithmetic on it.

A highly versatile and configurable class for parsing input text in a known
formatis java.util.Scanner. On the output side, java.io.PrintStream pro-
vides extensive text formatting capabilities.

There are many other examples of text streams requiring specialized soft-
ware codecs: HTTP? commands, serialized Java classes in JSON® or XML* for-
mat, web pages in HTML.? We will be seeing some of these in A7.

2.4 Buffering

Access to the underlying input stream may be inefficient if the source is remote
or the medium is slow. To improve performance, input streams and readers
are often wrapped in a BufferedInputStream or BufferedReader to provide
buffering. The underlying stream is read in large chunks at a time, which oc-
curs only when the buffer becomes empty.

InputStream in =
new BufferedInputStream(new FileInputStream(fileName));

Reader in =
new BufferedReader(new FileReader (fileName));

3 Input sources

There are a number of possible sources from which your Java program may get
data. Except for command line arguments, most input data is available in the
form of an InputStream.

3.1 Command line arguments

When a user runs your program from the console, they can supply arguments
on the command line. These arguments are then available to your program in
the String[] array parameter of the main method.

For example, if you type in a console window

java MyProgram a b "c d" e
and the main method of MyProgram looks like

public static void main(String[] args) {
for (String s : args) {

2HyperText Transfer Protocol
3JavaScript Object Notation
“Extensible Markup Language
SHyperText Markup Language

https://docs.oracle.com/javase/10/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/10/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/BufferedInputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/10/docs/api/java/lang/String.html

System.out.println(s);
}
}

then you will see the output

o 0O T M

In Eclipse, you can supply the command line arguments under the Arguments
tab in the run configuration.

Name: MyProgram
(@ Main [pd= Arguments =), JRE | ¥; Dependencies | & Source | I Environment | [Z] Commen | [F| Prototype
Program arguments:

ab'cd'e

Variables...

3.2 Console (user input)

Another possible source of text data is console input typed in at the keyboard
by the user while the program is running. There is a built-in InputStream just
for this purpose, called System.in. Often this is wrapped in an instance of
Scanner to read the input one line at a time.

Say you executed the following code:

Scanner sysin = new Scanner(System.in);
System.out.print("Please type something: ");
String s = sysin.nextLine();
System.out.println("You typed: " + s);

Here is what you would see. User input is in green. The program will respond
when you hit enter.

Please type something: hi there
You typed: hi there

This is a pretty basic use of Scanner, but it has a lot of other useful functionality,
such as parsing numbers and other text conforming to a fixed format.

https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/10/docs/api/java/lang/System.html#in
https://docs.oracle.com/javase/10/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/10/docs/api/java/util/Scanner.html

3.3 File system

Often your program would like to read a file from the file system. Typically the
user will specify the file to be read, either by selecting it in a FileChooser or
textually by supplying a path name. Either method results in a path name by
which the file can be accessed. The path name will be either absolute, starting
from the root of the file system (usually C: on Windows and / on Unix-based
systems such as Macs) or relative to the current directory. If you run the pro-
gram from the console, the current directory is the one you are in; if you run it
from Eclipse, it is the project directory by default, but you can specify a differ-
ent one in the run configuration.

You can create an InputStream from a binary file or a Reader from a text
file by supplying the path name to the constructor.

InputStream in =
new FileInputStream("/Users/kozen/Documents/myBinaryFile");

Reader in =
new FileReader("/Users/kozen/Documents/myTextFile.txt");

3.4 Resource files

A resource is a file with some data that your program uses internally; for exam-
ple, a background image, audio clip, or text such as an English dictionary. It
is considered an integral part of your program and must always be available
whenever and wherever your program runs. It should be packaged up with
the program when you create an executable jar.

Java looks for resources using your program’s ClassLoader. This is the
system module that finds and loads the classes that your program uses. For
this reason, resources must be on the classpath so that the ClassLoader can
find them.

Here is a way to access a resource file as an InputStream:

InputStream in =
ClassLoader.getSystemResourceAsStream("myResource") ;

4 Output destinations

4.1 Console
To write text to the console, use
e System.out.print to print a string without a trailing newline,
e System.out.println to print a string with a trailing newline, and

e System.out.format to print a formatted string.

https://docs.oracle.com/javase/10/docs/api/javafx/stage/FileChooser.html
https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/10/docs/api/java/io/InputStream.html

The object System. out is an instance of java.io.PrintStream, which is a sub-
class of OutputStream, but does character conversion according to the plat-
form’s default character encoding as described in §2.2, and also allows format-
ted output.

4.2 Error messages

Error messages should go to System.err, which is another PrintStream like
System.out, also going to the console. The advantage of using System.err
for error messages is that it operates asynchronously with System. out, which
means that error messages will appear immediately rather than waiting for any
buffered output in System. out to clear.

4.3 File system

An output file can be created with FileOutputStream, a subclass of OutputStreamn.
This can be wrapped in a BufferedOutputStrean for efficiency if desired.

To write text files, the OutputStream can be wrapped in a PrintStream or
PrintWriter.

5 Examples

The following examples assume that the following field declaration is in scope:
Scanner sysin = new Scanner(System.in);

Many of these examples use the try-with-resources idiom so that the resources
will be automatically closed when you are done with them.

5.1 Reading the command line arguments
See §3.1.

5.2 Printing out user input

void displayUserInput() {
while (true) {
System.out.print("Please type something: ");
String s = sysin.nextLine();
if (s.equals("bye")) break;
System.out.println("You typed: " + s);
}
System.out.println("bye");
}

Sample run (user input is in green):

https://docs.oracle.com/javase/10/docs/api/java/lang/System.html#out
https://docs.oracle.com/javase/10/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/lang/System.html#err
https://docs.oracle.com/javase/10/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/10/docs/api/java/lang/System.html#out
https://docs.oracle.com/javase/10/docs/api/java/lang/System.html#err
https://docs.oracle.com/javase/10/docs/api/java/lang/System.html#out
https://docs.oracle.com/javase/10/docs/api/java/lang/System.html#out
https://docs.oracle.com/javase/10/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/BufferedOutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/PrintStream.html
https://docs.oracle.com/javase/10/docs/api/java/io/PrintWriter.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/try-with-resources.html

Please type something: hi there

You typed: hi there

Please type something: Java is cool!
You typed: Java is cool!

Please type something: bye

bye

5.3 Printing out a text file

void displayTextFile(String fileName) {
try (InputStream in =
new BufferedInputStream(new FileInputStream(fileName));
Scanner scanner = new Scanner(in)) {
while (scanner.hasNextLine()) {
System.out.println(scanner.nextLine());
}
} catch (IOException e) {
System.out.println("File could not be read");

}

or

void displayTextFile2(String fileName) {

char[] buffer = new char[256];

try (Reader in = new BufferedReader(new FileReader(fileName))) {
for (int n = in.read(buffer); n != -1; n = in.read(buffer)) {

System.out.print(new String(buffer, 0, n));

}

} catch (IOException e) {
System.out.println("File could not be read");

}

5.4 Copying a text file

long copyTextFile(File inFile, File outFile) {

if (!inFile.exists()) {
System.out.print ("Input file does not exist");
return -1;

}

if (outFile.exists()) {
System.out.print ("Output file exists; overwrite [yes/nol? ");
if (!sysin.nextLine().equals("yes")) return -1;

}

try (Reader in = new BufferedReader (new FileReader(inFile));

Writer out = new BufferedWriter(new FileWriter (outFile))) {
return in.transferTo(out);
} catch (IOException e) {
System.out.println("File was not copied");
return -1;

5.5 Copying a binary file

void copyBinaryFile(File inFile, File outFile) {
if (!inFile.exists()) {
System.out.print("Input file does not exist");
return;
}
if (outFile.exists()) {
System.out.print ("Output file exists; overwrite [yes/nol? ");
if (!sysin.nextLine().equals("yes")) return;
}
try (InputStream in =
new BufferedInputStream(new FileInputStream(inFile));
OutputStream out =
new BufferedOutputStream(new FileOutputStream(outFile))) {
for (int ¢ = in.read(); ¢ '= -1; ¢ = in.read()) {
out.write(c);
}
} catch (IOException e) {
System.out.println("File was not copied");

}

5.6 Printing out a text resource file

void displayTextResourceFile(String fileName) {
InputStream in = ClassLoader.getSystemResourceAsStream(fileName) ;
Scanner scanner = new Scanner (in);
while (scanner.hasNextLine()) {
System.out.println(scanner.nextLine());
}

scanner.close();

	Overview
	Types of data
	Binary data
	Text data
	Formatted data
	Buffering

	Input sources
	Command line arguments
	Console (user input)
	File system
	Resource files

	Output destinations
	Console
	Error messages
	File system

	Examples
	Reading the command line arguments
	Printing out user input
	Printing out a text file
	Copying a text file
	Copying a binary file
	Printing out a text resource file

