Discussion 10:
Shared Buffers

Bounded Queue & Ring Buffers

Bounded Queue ADT (BoundedQueue. java)

Queue (FIFO) with a fixed capacity.

Operations:
*put () —inserts only if capacity is not met.
*get () —removes oldest value if the queue is not empty.

eisFull()
cisEmpty()

Ring Buffer Data Structure

Size =3

* Implements Bounded Queue

* Elements stored in fixed-capacity n

_z
”ea"{ |

Ring Buffer Data Structure

Put: store in next available index (requires size < capacity)

 (head + size) % capacity
Size=3 Size =4

B] B
Next available
Next ayailable
== KN
Head { J Head { }

Ring Buffer Data Structure

Get: advance head, return previous value (requires size > 0)
Size =4 Size=3

Next available

2
s

Review: lterators

Java lterator

* Generic interface expressing Usage:
ADT
-Nkﬁhofg i 0 Iterator<String> it = ...;
* boolean hasNext(); .]
‘T next(); while (it.hasNext()) {

String s = it.next();

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Iterator.html

Enhanced for-loops

List<String> names = ...;
for (int i=0; i<names.size(); ++1)

{

String name = names.get(i);

List<String> names

for (String name :

--,

names) {

... are translated into while loops
("syntactic sugar")

List<String> names = ...; List<String> names = ...;

for (String name : names) { Iterator<String> it =
names.iterator();

while (it.hasNext()) {
String name = it.next();

¥

Iteration interfaces

Iterable<T> - RingBufferBQ Iterator<T> - RingBufferBQIterator
* "Something that can be iterated ¢ Helper class for actually doing
over" the iteration

e Can use in an enhanced for-loop *Mutable (one-time use) - need a
e Yields lterators new one for each loop

*Yields values

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Iterator.html

Nested classes

* Classes declared inside other classes (usually a "helper" of some kind)

e Static: Outer class acts as a namespace, can hide class from other
potential clients

* Non-static ("inner classes"): Inner class objects are attached to an
outer class instance
* Can only be created from an instance of the outer class
» Can access outer object's fields and methods
 Common choice for lterators

* Enables more encapsulation (private fields)

Shared Buffers

Producer/consumer pattern (example)

* One or more fry cooks slides
new fries onto the “ready” shelf
* Producer

* One or more cashiers take fries
from the “ready” shelf to
complete orders

* Consumer

* Shelf can only hold so many fries
* Bounded queue

RingBufferBQ.main()

public static void main(String[] args) {
// The shared buffer

RingBufferBQ<Integer> b = new RingBufferBQ<>(capacity:1); } A Single Sha FEd buffer

/ —
// Task for producer threads to perform
Runnable p = () -> {
fon (EnEd, =fEtx i el Producer Threads:
b.put(i); SS— .
) Put numbers 0..9 into buffer
System.out.println("Producer done");
E:
—
// Task for consumer threads to perform
Runnable ¢ = () -> A
int sum = 0;
for (int i = 0; i < 10; ++i) {
e T = BEE): Consumer Threads:
sum += J;
} L Sum 10 values from buffer
System.out.println("Consumer done; sum: " + sum);
E:

Spin loop

while (COND) { /* spin */ }

where COND is true if the resource shouldn’t be accessed.

* We will see why this is a bad idea very soon.

