
Discussion 4
Prelim 1 review

CS 2110, FA23

Topics

● Procedural programming in Java
● Compile-time and runtime
● Classes

● Testing
● Object-oriented programming
● Exceptions

Procedural programming in Java

Classify the following as either a primitive type, a
reference type, or not a type name:

● Object
● char
● 5
● String
● null
● int[]

Predict the result of running this program on the given
input

int[] arr = new int[]{1, 2, 4, 8, 16, 32, 64, 128};

for (int i = 0; i < arr.length; i +=1) {

 int temp = arr[arr.length - i - 1];

arr[arr.length - i - 1] = arr[i];

arr[i] = temp;

}

Complete this short method given the specification

/** Returns a new String with the characters of s in reverse order,
 * ex. reverseString("hello") => "olleh".
 * Requires s is not null.
 * You may not use any Java methods or classes beyond length(),
 * charAt(), and concatenation operators. */

public static String reverseString(String s) {

}

Compile-time and run-time

Give an initialization value of w that…?

1. Causes a compile-time
error.
a. In this case do any of our

print statements run?
2. Causes an

ArithmeticException to be
thrown
a. In this case what gets

printed?
3. Causes 0 to be printed.

Determine if the following statements compile:

a) I1 k = (I2) i2;

b) I1 k2 = b;

c) I1 k3 = i2;

d) String s = i2.toString();

B b = new B();

I2 i2 = b;

Classes in Java

Class Diagrams

public class Student {
private String name;
private String netId;
private int credits;

public String name() {
 return name;
}

public String netId() {
 return netId;
}

public void modifyCredits(int creditChange) {
 credits += creditChange;
}

}

Given the following class, please draw a class diagram:

Label the return type, parameters, specification, keywords, types and literals in
the method below:
 /**
 * This method returns true if every character in String word consists of
 * lowercase english alphabet ('a' - 'z'), and false if otherwise.
 * Requires: word is not null or empty ("").
 */
 public static boolean isAllLowerCase(String word) {
 for (int i = 0; i < word.length(); i++) {
 char currentChar = word.charAt(i);
 if (currentChar < 'a' || currentChar > 'z') {
 return false;
 }
 }
 return true;
 }
}

Implement isSolved() according to the specification
/** A class representing a single row of cells in a Sudoku game */
public class SudokuRow {
 /** The values in each of the cells in the row.
 * Each element is either filled with a number 1-9 or is an empty cell, marked by a 0
 * Invariant: Only contains values in the range 0-9 inclusive.
 * Invariant: Each number in range 1-9 inclusive can only appear at most once in the row.
 */
 private int[] cells;

 // Other fields, constructors, and methods omitted

 /** Returns whether the row has been solved. A row has been solved if there are no empty cells in the row
 */
 public boolean isSolved() {
 //TODO
 }
}

Testing

Given the method specification, write at least three black box tests,
stating the input and expected output

Recap: Black box testing is a technique of testing where the functionality of the software is
tested by only looking at the specifications and without looking at the code.

The function you are testing is movingAverage(). It takes in 2
parameters, an array of integers and a window size (must be a
positive integer), and returns an array of doubles representing the
average of all integers in the sliding window.

Special cases:

- If the array is empty, return null
- If window size > size of the array, return an array with just one element (average of the list)

Object-oriented programming in Java

What will happen when we try to compile and run A and B?
public class Animal {

public void makeNoise() {
System.out.println(“This animal is making its call”);
call();

}

public void call() {
System.out.println(“Grunt”);

}
}

public class Cat extends Animal {
public void call() {

System.out.println(“Meow”);
}

public void pet() {
System.out.println(“Purr”);

}
}

A
public static void main(String args[]) {

Animal oliver = new Cat();
oliver.makeNoise();

}

B
public static void main(String args[]) {

Animal oliver = new Cat();
oliver.pet();

}

Does the following equals() method for the Player class satisfy all the
properties of an equivalence relation? If not, which ones does it violate
Public class Player{

public String playerName;

public int jerseyNo;

public String team;

public boolean equals(Object obj) {

if(!obj instance of Player) {return false;}

Player pl = (Player) obj;

if(this.jerseyNo > pl.jerseyNo) {

 return this.playerName.equals(pl.playerName) && this.team.equals(pl.team);

}

return this.playerName.equals(pl.playerName);

}

}

Does Class SuperSonics implement Interface NBATeam? Are there
any compile-time errors?

public interface NBATeam {

 public double winPercent();

 public String nextGame();

}

public class SuperSonics implements NBATeam {
 int gamesPlayed;
 double winPercent;
 String[] schedule;
 public SuperSonics(){

gamesPlayed = 0;
this.winPercent = 0.0;
this.schedule = null;
//the team no longer exists, so the schedule will always
be null

 }
 public double winPercent() {
 return winPercent;
 }
 public String nextGame() {
 return schedule[gamesPlayed];
 }
}

(There are no specifications, so we can’t
say whether it implements it correctly; just
interested in whether it compiles for now.)

Exceptions

Exceptions: Try-Catch

● (1) Does this try block
throw an exception? If
so what exception? (2)
What is the final value
of the variable b (if the
program does not
crash)? (3) What is
printed out?

Convert the following method to throw an Exception
instead of returning -1:

public int indexOf(char input) {
// Iterate over each character in String
for (int i = 0; i < this.length(); i++) {

// If current character equals input character
if (this.charAt(i) == input) {

return i; // Return the current index
}

}

return -1; // Character not found, return -1
}

