
THREADS & CONCURRENCY

Lecture 24– CS2110 – Spring 2019

A6 and A7

A6: get 100 for correctness (perhaps minus a late penalty), you can
use your A6 in A7. Otherwise, use our solution.
See pinned Piazza note for A7.

Wed morn: A6 grades available. Got 100? No feedback. BUT:
Graders are checking adherence to Style guidelines in A6 handout
and deducting points here or there. So your grade may be lowered.

Start on A7 soon. Don’t wait till the last minute. Deadline: 3 May.
Nothing accepted later. We have to grade quickly and determine
tentative course letter grades, so you can decide whether to take
the final.

2

CPU Central Processing Unit. Simplified view

The CPU is the part of the
computer that executes
instructions.

Java: x= x + 2;

Suppose variable x is at
Memory location 800,
Instructions at 10

Machine language:
10: load register 1, 800
11: Add register 1, 2
12: Store register 1, 800

3

Basic uniprocessor-CPU computer.
Black lines indicate data flow, red
lines indicate control flow
From wikipedia

Part of Activity Monitor in Gries’s laptop
4

>100 processes are competing for time. Here’s some of them:

Clock rate

¨ Clock rate “frequency at which CPU is running”
Higher the clock rate, the faster instructions
are executed.

¨ First CPUs: 5-10 Hz
(cycles per second)

¨ Now: MacBook Pro 3.5GHz
¨ Your OS can control clock

rate, slow it down when
idle, speed up when
morework to do

5

Why multicore?

¤ Moore’s Law: Computer speeds and memory densities
nearly double each year

6

But a fast computer runs hot

¨ Power dissipation rises as square of the clock rate
¨ Chips were heading toward melting down!
¨ Put more CPUs on a chip:

with four CPUs on one
chip, even if we run each at
half speed we can perform
more overall computations!

7

Today: Not one CPU but many

Processing Unit is called a core.

¨ Modern computers have �multiple cores� (processing units)
¤ Instead of a single CPU (central processing unit) on the chip

5-10 common. Intel has prototypes with 80!

¨ We often run many programs/applications at the same time

¨ Even with a single core (processing unit), your program may
have more than one thing �to do� at a time
¤ Argues for having a way to do many things at once

8

Many programs. Each can have several
“threads of execution”

We often run many programs at the same time
And each program may have several “threads of execution”

9

Example, in GUI paint program,
when you click the pencil tool, a
new thread of execution is
started to call the method to
process it:

Main GUI thread Process pencil
click

Many processes are executed
simultaneously on your computer

10

• Operating system provides support for multiple
“processes”

• Usually fewer processors than processes
• Processes are an abstraction:

at hardware level, lots of multitasking
–memory subsystem
–video controller
–buses
–instruction prefetching

Concurrency

¨ Concurrency refers to a single program in which several
processes, called threads, are running simultaneously
¤ Special problems arise
¤ They see the same data and hence can interfere with each

other, e.g. one process modifies a complex structure like a
heap while another is trying to read it

¨ CS2110: we focus on two main issues:
¤ Race conditions
¤ Deadlock

11

Race conditions

¨ A �race condition� arises if two or more processes access the
same variables or objects concurrently and at least one does
updates

¨ Example: Processes t1 and t2 x= x + 1; for some static
global x.

Process t1 Process t2
… ...

x= x + 1; x= x + 1;

But x= x+1; is not an “atomic action”: it takes several steps

12

Race conditions

¨ LOAD x (register contains 5)

¨ ADD 1 (register contains 6)

¨ STORE x (x contains 6)

¨ ...
¨ LOAD x (register contains 5)

¨ ADD 1 (register contains 6)

¨ STORE x (x contains 6)

Thread t1 Thread t2

13

¨ Suppose x is initially 5

¨ ... after finishing, x = 6! We “lost” an update

Race conditions

¨ Typical race condition: two processes wanting to change a
stack at the same time. Or make conflicting changes to a
database at the same time.

¨ Race conditions are bad news

¤ Race conditions can cause many kinds of bugs, not just the
example we see here!

¤ Common cause for �blue screens�: null pointer exceptions,
damaged data structures

¤ Concurrency makes proving programs correct much harder!

14

Deadlock

¨ To prevent race conditions, one often requires a process to
“acquire” resources before accessing them, and only one
process can “acquire” a given resource at a time.

¨ Examples of resources are:
¤ A file to be read
¤ An object that maintains a stack, a linked list, a hash table,

etc.

¨ But if processes have to acquire two or more resources at the
same time in order to do their work, deadlock can occur. This is
the subject of the next slides.

15

Dining philosopher problem
16

Five philosophers
sitting at a table.

Each repeatedly
does this:

1. think
2. eat

What do they
eat?
spaghetti.

Need TWO forks
to eat spaghetti!

Dining philosopher problem
17

Each does
repeatedly :

1. think
2. eat (2 forks)

eat is then:
pick up left fork
pick up right fork
pick up food, eat
put down left fork
put down rght fork

At one point,
they all pick up
their left forks

DEADLOCK!

Dining philosopher problem
18

Simple solution to
deadlock:
Number the forks. Pick
up smaller one first

1. think
2. eat (2 forks)

eat is then:
pick up smaller fork
pick up bigger fork
pick up food, eat
put down bigger fork
put down smallerfork1

2

4

3

5

Java: What is a Thread?

¨ A separate �execution� that runs within a single program and
can perform a computational task independently and
concurrently with other threads

¨ Many applications do their work in just a single thread: the one
that called main() at startup
¤ But there may still be extra threads...
¤ ... Garbage collection runs in a �background� thread
¤ GUIs have a separate thread that listens for events and
�dispatches� calls to methods to process them

¨ Today: learn to create new threads of our own in Java

19

Thread

¨ A thread is an object that �independently computes�
¤ Needs to be created, like any object
¤ Then �started� --causes some method to be called. It runs

side by side with other threads in the same program; they
see the same global data

¨ The actual executions could occur on different CPU cores, but
but don’t have to
¤ We can also simulate threads by multiplexing a smaller

number of cores over a larger number of threads

20

Java class Thread

¨ threads are instances of class Thread
¤ Can create many, but they do consume space & time

¨ The Java Virtual Machine creates the thread that executes
your main method.

¨ Threads have a priority
¤ Higher priority threads are executed preferentially
¤ By default, newly created threads have initial priority equal

to the thread that created it (but priority can be changed)

21

Creating a new Thread (Method 1)
22

class PrimeThread extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a= a; this.b= b;

}

@Override public void run() {
//compute primes between a and b
...

}
}

PrimeThread p= new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

Call run() directly?
no new thread is used:
Calling thread will run it

Do this and
Java invokes run() in new thread

Creating a new Thread (Method 2)
23

class PrimeRun implements Runnable {
long a, b;

PrimeRun(long a, long b) {
this.a= a; this.b= b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeRun p= new PrimeRun(143, 195);
new Thread(p).start();

Example
24

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i= 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
for (int i= 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Thread name, priority, thread group

Example
25 Thread[main,5,main] 0

Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i= 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(4);
for (int i= 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Thread name, priority, thread group

Example
26 Thread[main,5,main] 0

Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i= 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(6);
for (int i= 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}}}

Thread name, priority, thread group

Example
27

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.println("waiting...");
yield();

}
ok = false;

}

public void run() {
while (ok) {

System.out.println("running...");
yield();

}
System.out.println("done");

}
}

If threads happen to be sharing
a CPU, yield allows other waiting

threads to run.

Terminating Threads is tricky

¨ Easily done... but only in certain ways
¤ Safe way to terminate a thread: return from method run
¤ Thread throws uncaught exception? whole program will be

halted (but it can take a second or two ...)

¨ Some old APIs have issues: stop(), interrupt(), suspend(),
destroy(), etc.

¤ Issue: Can easily leave application in a �broken� internal
state.

¤ Many applications have some kind of variable telling the
thread to stop itself.

28

Threads can pause

¨ When active, a thread is �runnable�.
¤ It may not actually be �running�. For that, a CPU must

schedule it. Higher priority threads could run first.

¨ A thread can pause
¤ Call Thread.sleep(k) to sleep for k milliseconds
¤ Doing I/O (e.g. read file, wait for mouse input, open file)

can cause thread to pause
¤ Java has a form of locks associated with objects. When

threads lock an object, one succeeds at a time.

29

Background (daemon) Threads

¨ In many applications we have a notion of �foreground� and
�background� (daemon) threads
¤ Foreground threads are doing visible work, like interacting

with the user or updating the display
¤ Background threads do things like maintaining data

structures (rebalancing trees, garbage collection, etc.)

¨ On your computer, the same notion of background workers
explains why so many things are always running in the task
manager.

30

Example: a lucky scenario
31

private Stack<String> stack= new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s= stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty() ⇒ true
4. thread B just returns – nothing to do

Example: an unlucky scenario
32

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s= stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() ⇒ false
2. thread B tests stack.isEmpty() ⇒ false
3. thread A pops ⇒ stack is now empty
4. thread B pops ⇒ Exception!

Synchronization

¨ Java has one primary tool for preventing race conditions.
you must use it by carefully and explicitly – it isn’t automatic.
¤ Called a synchronization barrier
¤ We study this in the next lecture

33

