
4/17/19

1

JAVA GENERICS
Lecture 22
CS2110 – Spring 2019

Photo credit: Andrew Kennedy

Announcements

Midnight tonight. Deadline for A6.
Late ones until Sunday night.

We tell you soon whether your A6 can be used in A7.

We make A7 available and demo it.

2

Material on generics

JavaHyperText entry
generics

Look at lecture notes page of course website,
row for this lecture, and download demo code.

3

Early versions of Java lacked generics…
4

Java Collections

interface Collection {
/** Return true iff the collection contains ob */
boolean contains(Object ob);
/** Add ob to the collection; return true iff

* the collection is changed. */
boolean add(Object ob);
/** Remove ob from the collection; return true iff
* the collection is changed. */

boolean remove(Object ob);
...

}

5

Java Collections

Collection c = ...
c.add("Hello")
c.add("World");
...
for (Object ob : c) {

String s= (String) ob;
System.out.println(s + " : " + s.length());

}

Lack of generics was painful because programmers had to
manually cast.

… and it was too easy to make mistakes!

6

Using Java Collections

String[] a = ...
a[0]= ("Hello")
a[1]= ("World");
...
for (String s : a) {

System.out.println(s);
}

Limitation seemed especially awkward because built-in arrays
do not have the same problem!

In late 1990s, Sun Microsystems initiated a design process to add
generics to the language ...

4/17/19

2

7

Arrays → Generics

Object[] oa= ... // array of Objects
String[] sa= ... // array of Strings
ArrayList<Object> oA= ... // ArrayList of Objects
ArrayList<String> oA= ... // ArrayList of Strings

Array of Strings, ArrayList of strings ---same concept with a
different syntax

We should be able to do the same thing with object types
generated by classes!

8

Proposals for adding Generics to Java

PolyJ Pizza/GJ LOOJ

Andrew Meyers Nate Foster
Turing Award winner Barbara Liskov

…all based on parametric polymorphism.

9

Winner:
Gilad Bracha Phil Wadler Martin Odersky

Reason: Proposal did not require changes to the Java Virtual Machine.

David Stoutamire

CL.java CL.classCompiler

Why not? Their proposal uses type erasure. All notions of type are
erased from the program. (It could look like a Python program, which
doesn’t have types.) Of course, there are checks for improper casting
and such.

With generics, the Collection interface becomes...
10

Generic Collections

interface Collection<T> {
/** Return true iff the collection contains x */
boolean contains(Object x);

/** Add x to the collection; return true iff
* the collection is changed. */

boolean add(T x);

/** Remove x from the collection; return true iff
* the collection is changed. */

boolean remove(T x);
...

}

Can be a lot more complicated
11

Generic Collections

interface Iterable<T> {
default void forEach(Consumer<? super T > action)

}

class Arrays {
/** Sort b according to the natural ordering. */
static <T extends Comparable<? super T>> void

parallelSort(T[] b)

}

WOW! Who can understand THAT!!

12

Using Java Collections

Collection<String> c= ...
c.add("Hello")
c.add("World");
...
for (String s : c) {

System.out.println(s + " : " + s.length());
}

With generics, no casts are needed...

… and mistakes (usually) get caught!

4/17/19

3

13

Type checking (at compile time)

// This is Demo0
Collection<String> c= ...
c.add("Hello") /* Okay */
c.add(1979); /* Illegal: syntax error! */

The compiler can automatically detect uses of collections with
incorrect types...

Generally speaking,
Collection<String>

behaves like the parameterized type
Collection<T>

where all occurrences of T have been replaced by String.

Subtyping extends naturally to generic types.
14

Subtyping

interface Collection<T> { ... }
interface List<T> extends Collection<T> { ... }
class LinkedList<T> implements List<T> { ... }
class ArrayList<T> implements List<T> { ... }

/* The following statements are all legal. */
List<String> l= new LinkedList<String>();
ArrayList<String> a= new ArrayList<String>();
Collection<String> c= a;
l= a
c= l;

Java’s type system allows the analogous rule for arrays:
15

Array Subtyping

// This is Demo1
String[] as= new String[10];
Object[] ao= new Object[10];

ao= as; //Type-checks: considered outdated design
ao[0]= 2110; //Type-checks: Integer subtype Object
String s= as[0]; //Type-checks: as is a String array

What happens when this code is run? TRY IT OUT!
It throws an ArrayStoreException! Because arrays are built into
Java right from beginning, it could be defined to detect such errors

Java’s type system allows the analogous rule for arrays:
16

Array Subtyping

// This is Demo1
String[] as= new String[10];
Object[] ao= new Object[10];

ao= as;
ao[0]= 2110;
String s= as[0];

Is this legal? TRY IT OUT!

String[] is a subtype of Object[]
...is ArrayList<String> a subtype of ArrayList<Object>?

17

Subtyping

// This is Demo1
ArrayList<String> ls= new ArrayList<String>();
ArrayList<Object> lo= new ArrayList<Object>();

lo= ls; //Suppose this is legal
lo.add(2110); //Type-checks: Integer subtype Object
String s = ls.get(0); //Type-checks: ls is a List<String>

TRY IT OUT! The answer is NO. ArrayList<String> is
NOT a subtype of ArrayList<Object>

We would like to rewrite the parameter declarations so this method
can be used for ANY list, no matter the type of its elements.

18

A type parameter for a method

Demo 2
/** Replace all values x in list by y. */
public void replaceAll(List<Double> ts, Double x, Double y) {

for (int i= 0; i < ts.size(); i= i+1)
if (Objects.equals(ts.get(i), x))

ts.set(i, y);
}

4/17/19

4

Try replacing Double by some “Type parameter” T, and Java will
still complain that type T is unknown.

19

A type parameter for a method

/** Replace all values x in list ts by y. */
T T T

public void replaceAll(List<Double> ts, Double x, Double y) {
for (int i= 0; i < ts.size(); i= i+1)

if (Objects.equals(ts.get(i), x))
ts.set(i, y);

}

Somehow, Java must be told that T is a type parameter and not a
real type. Next slide says how to do this

Placing <T> after the access modifier indicates that T is to
be considered as a type parameter, to be replaced when the
method is called.

20

A type parameter for a method

/** Replace all values x in list ts by y. */
public <T> void replaceAll(List<T> ts, T x, T y) {

for (int i= 0; i < ts.size(); i= i+1)
if (Objects.equals(ts.get(i), x))

ts.set(i, y);
}

Suppose we want to write a method to print every value in a
Collection<T>.

21

Printing Collections

void print(Collection<Object> c) {
for (Object x : c) {

System.out.println(x);
}

}
...
Collection<Integer> c= ...
c.add(42);
print(c); /* Illegal: Collection<Integer> is not a

* subtype of Collection<Object>! */

To get around this problem, wildcards were added
22

Wildcards

void print(Collection<?> c) {
for (Object x : c) {

System.out.println(x);
}

}
...
Collection<Integer> c= ...
c.add(42);
print(c); /* Legal! */

One can think of Collection<?> as a “Collection of some
unknown type of values”.

We can’t add values to collections whose types are wildcards ...
23

Wildcards

void doIt(Collection<?> c) {
c.add(42); /* Illegal! */

}
...
Collection<String> c= ...
doIt(c); /* Legal! */

42 can be added to
• Collection<Integer>
• Collection<Number>
• Collection<Object>
but c could be Collection of any-
thing, not just supertypes of Integer

Integer

Number

Object

How to say that ? can be a supertype of Integer?

Sometimes it is useful to have some information about a
wildcard. Can do this by adding bounds...

24

Bounded Wildcards

void doIt(Collection<? super Integer> c) {
c.add(42); /* Legal! */

}
...
Collection<Object> c= ...
doIt(c); /* Legal! */
Collection<Float> c= ...
doIt(c); /* Illegal! */

Now c can only be a Collection
of Integer or some supertype of
Integer, and 42 can be added
to any such Collection

“? super” is useful when you are only giving values to the object,
such as putting values into a Collection.

4/17/19

5

“? extends” is useful when you are only receiving values from the
object, such as getting values out of a Collection.

25

Bounded Wildcards

void doIt(Collection<? extends Shape> c) {
for (Shape s : c)

s.draw();
}
...
Collection<Circle> c= ...
doIt(c); /* Legal! */
Collection<Object> c= ...
doIt(c); /* Illegal! */ Rectangle

Shape

Object

Square

Wildcards can be nested. The following receives Collections from an
Iterable and then gives floats to those Collections.

26

Bounded Wildcards

void doIt(Iterable<? extends Collection<? super Float>> cs) {
for(Collection<? super Float> c : cs)

c.add(0.0f);
}
...
List<Set<Float>> l= ...
doIt(l); /* Legal! */
Collection<List<Number>> c= ...
doIt(c); /* Legal! */
Iterable<Iterable<Float>> i= ...
doIt(i); /* Illegal! */
ArrayList<? extends Set<? super Number>> a= ...
doIt(a); /* Legal! */

We skip over this in
lecture. Far too
intricate for everyone
to understand. We
won’t quiz you on
this.

Here’s the printing example again. Written with a method type-
parameter.

27

Generic Methods

<T> void print(Collection<T> c) {// T is a type parameter
for (T x : c) {

System.out.println(x);
}

}
...
Collection<Integer> c= ...
c.add(42);
print(c); /* More explicitly: this.<Integer>print(c) */

But wildcards are preferred when just as expressive.

Suppose we want to catenate a list of lists into one list. We want
the return type to depend on what the input type is.

28

Catenating Lists

lists

3 8

6

2

5

7

Return this list
3 6 8 7 5 2

The return type depends on what the input type is.
29

Catenating Lists

/** Return the flattened version of lists. */
<T> List<T> flatten(List<? extends List<T>> lists) {

List<T> flat= new ArrayList<T>();
for (List<T> l : lists)

flat.addAll(l);
return flat;

}
...
List<List<Integer>> is= ...
List<Integer> i= flatten(is);
List<List<String>> ss= ...
List<String> s= flatten(ss);

Interface Comparable<T> declares a method for comparing one
object to another.

30

Interface Comparable

interface Comparable<T> {
/* Return a negative number, 0, or positive number
* depending on whether this is less than,
* equal to, or greater than that */

int compareTo(T that);
}

Integer, Double, Character, and String
are all Comparable with themselves

4/17/19

6

Type parameter: anything T that implements Comparable<T>
31

Our binary search

/** Return h such that c[0..h] <= x < c[h+1..].

* Precondition: c is sorted according to .. */

public static <T extends Comparable<T>>

int indexOf1(List<T> c, T x) {

int h= -1;

int t= c.size();

// inv: h < t && c[0..h] <= x < c[t..]

while (h + 1 < t) {

int e= (h + t) / 2;

if (c.get(e).compareTo(x) <= 0) h= e;

else t= e;

}

return h;

}

Type parameter: anything T that implements Comparable<T>
32

Those who fully grok generics write:

/** Return h such that c[0..h] <= x < c[h+1..].
* Precondition: c is sorted according to .. */

public static <T extends Comparable<? super T>>
int indexOf1(List<T> c, T x) {

int h= -1;
int t= c.size();
// inv: h < t && c[0..h] <= x < c[t..]
while (h+1 < t) {

int e= (h + t) / 2;
if (c.get(e).compareTo(x) <= 0)

h= e;
else t= e;

}
return h;
}

Anything
that is a
superclass
of T.

Don’t be concerned with this!
You don’t have to fully
understand this.

Sir Tony Hoare

Inside every large program is a small program struggling to get
out.
The unavoidable price of reliability is simplicity.

33

Edsger W. Dijkstra

Beauty is our business.
How do w convince people that in programming simplicity and
clarity —in short, what mathematicians call elegance— are not a
dispensable luxury but a crucial matter that decides between
success and failure?
Simplicity and elegance are unpopular because they require hard
work and discipline to achieve and education to be appreciated.

34

Donald Knuth

Programs are meant to be read by humans and only incidentally
for computers to execute
Everyday life is like programming, I guess. If you love
something you can put beauty into it.
The best practice is inspired by theory.

35

