
CS2110HASHING

Announcements

¨ Submit Prelim 2 conflicts by Wednesday (tomorrow)
night

¨ A6 is due April 18 (Thursday!)
¨ Prof Clarkson diagnosed with a concussion and is

staying home this week. Don’t send him email —he’s
supposed to stay away from his computer.

2

Material in for Hashing

¨ Tutorial on hashing:
in lower navigation bar in JavaHyperText

¨ Entry hash in JavaHyperText
¨ Specific to Java. API documentation for:

hashCode() and function equals(Object ob)
¨ Lecture notes page of course website.

Demo code for hashing with chaining and hashing
with open addressing

3

Ideal Data Structure
4

Data Structure add(val x) get(int i) contains(val x)

ArrayList

LinkedList

Goal:

2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

!(#)
!(#)

!(1) !(1)

Also known as: add, lookup, search

!(1)

Table gives expected times, not worst-case times

New Data Structure
5

Data Structure add(val x) get(int i) contains(val x)

ArrayList

LinkedList

2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

!(#)
!(#)

!(1) !(1)3 1 2
0 1 2 3

Expected time
Worst-case: !(#)

HashSet

: Hash Set

AKA add, lookup, search

!(1)

Table gives expected times, not worst-case times

Notion of hashing
6

Hash: to chop to pieces; to make a confused muddle of;
to jumble; to dice, chop, mince.

In computing: Produce a relatively small number or string
from something a lot bigger, like a file, or an Java object.

Look at CMS page for A2 submission. Md5 is a hash function.
Given your A2.java file, it produces a 128-bit number from it.
Sometimes called a checksum. Compare the Md5 number for your
for your file to the MD5 number of the one that was uploaded. If
different, uploading corrupted the file.

¨ Hash functions are used to store
passwords

¨ Could store plaintext passwords
¤ Problem: Password files get stolen

Application: Password Storage

h(password): h is the hash function.
It produces some jumbled version of the password.

Hashing history

We will use hashing —a hash function— to implement sets of
values in a hash table.

1953. Hand Peter Luhn wrote an internal IBM memorandum
that used hashing with chaining.

A few others did it roughly the same time.

Ershov (Russian) and Amdahl independently invented hashing
with open addressing and linear probing.

Idea: finding an element in an array takes constant
time when you know which index it is.
So… let’s place elements in the array based on their
starting letter! (A=0, B=1, …)

Intuition behind a Hash Set

CA 2add(“CA”)

b

of
1st letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

MA NY OR PACA

contains(“DE”) DE 3# of
1st letter

What could go wrong?

¨ Some buckets get used quite a bit!
Connecticut, Colorado

¤ called Collisions

¨ Not all buckets get used

b
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

AL CA DE FL GA MA NY OR PA

bucket: one of the
array elements

Hash Function

Example: hashCode(“Oregon”) mod 10 = 14 mod 10 = 4
So put “Oregon” in bucket 4.

Given a value to be put into the
table, a hash function returns an
index where to put it.

E.g. hash function(stateName)
could return value depending
on first character:

0 for A, 1 for B, 2 for C, etc.

The hash function knows
nothing about the table size.
Therefore, always take the
hash-function values mod the
table size in order to get an
index into the table.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

AL CA DE FL GA MA NY OR PA

Example: hashCode()

¨ hashCode() defined in java.lang.Object
¨ Default implementation: uses memory address of object

¤ If you override equals, you must override hashCode!!!
We’ll explain why later.

¨ String overrides hashCode:
s. hashCode() ∶
= -[0] ∗ 31456 + -[1] ∗ 31458 + … + -[: − 1]

12

Do we like this hashCode?

Can we have perfect hash functions?

¨ A perfect hash function will map each value to a different
index in the hash table

¨ Impossible in practice

● Don’t know size of the array

● Number of possible values far far exceeds the array size

● No point in a perfect hash function if it takes too much time to
compute

Forget about perfect hash functions!

Collision Resolution

Two ways of handling collisions:

1. Chaining 2. Open Addressing

A bucket contains a
linked list of items that
hash to it

A bucket contains one item of
the set. Look in successive
array elements to find a place
for a new item

Chaining (1) add(“NY”)

NY 13add(“NY”)

b

of
1st letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA MA NY OR PA

Each bucket is the beginning of a Linked List

CO

Chaining (2) add(“NY”)
add(“NJ”)

NJ 13add(“NJ”)

b

of
1st letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA MA NY OR PA

NJ

Each bucket is the beginning of a LinkedList

CO

Note: might be better to
add items to the head

of the linked list.

Chaining (3) add(“NY”)
add(“NJ”)
rem(”NJ")

NJ 13rem(“NJ”)

b

of
1st letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA MA OR PANY

NJ

Each bucket is the beginning of a LinkedList

CO

Rem: remove and return

Chaining in Action

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:
Use (hashCode % n_buckets)

0 1 2 3 4 5

a b c

d

e

Open Addressing (1) add(“NY”)

NY 13add(“NY”)

b

of
1st letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA CO MA OR PANY

Probe: One test in finding space for a
new item or when searching for an item

Open Addressing (2) add(“NY”)

NJ 13add(“NJ”)

b

of
1st letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA CO MA OR PANY

add(“NJ”)

NJ

search
for space

Probe: One test in finding space for a
new item or when searching for an item

Open Addressing (3) add(“NY”)

NJ 13rem(“NJ”)

b

of
1st letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA CO MA OR PANY

add(“NJ”)

NJ

Search for NJ
(stop searching if
element is null)

rem(”NJ")
...

What could possibly go wrong?
add(“NY”),add(“NJ”),get(“NY”),get(“NJ”)

Probe: One test in finding space for a
new item or when searching for an item

rem: get/remove

Deletion Problem w/Open Addressing
add(“NY”)

b
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA CO MA OR PANY

add(“NJ”)

NJ

rem(”NJ")
rem(”NY")

Search for NJ
(stop searching b/c

element b[13] is null!)

Probe: One test in finding space for a
new item or when searching for an item

rem: get/remove

Deletion Solution for Open Addressing
add(“NY”)

b
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 25

CA CO MA OR PANY

add(“NJ”)

NJ

get(”NJ")
get(”NY")

to mark element as “not present”
Indicates to search that it should keep looking

Search for NJ
(search until it finds a null element
or the element it’s searching for)

NY
NP

Probe: One test in finding space for a
new item or when searching for an item

Different probing strategies

linear probing:
search the array
in order:
i, i+1, i+2, i+3 . .
.

When a collision occurs,
how do we search for an empty space?

quadratic probing:
search the array in
this sequence:
i, i+12, i+22, i+32 . . .

clustering:
problem where nearby
hashes have similar
probe sequences so
we get more collisions

Quadratic probing requires the size of the array to be a
prime in order to have access to every bucket.

Linear Probing in Action

element a b c d

hashCode 0 8 17 12

Insert the following elements (in order) into an array of size 5:

0 1 2 3 4

a bc d
probe #1
insert d:

i
full!

probe #2
insert d:

i+1
full!

probe #3
insert d:

i+2
has space!

Quadratic Probing in Action

element a b c d

hashCode 0 8 17 12

Insert the following elements (in order) into an array of size 5:

0 1 2 3 4

a bcd
probe #1
insert d:

i
full!

probe #2
insert d:

i+12

full!

probe #3
insert d:

i+22

has space!

In Java, functions hashCode and equals

HashSet, HashMap use functions hashCode(), equals(…)

c.HashCode() in class Object returns the address in
memory of object c

c.equals(c1) in class Object is true iff c and c1 point to the
same object

In Java, functions hashCode and equals

Elements of set HashSet have class type, e.g. Pt

0 1 2 3 4

bc

Class Pt {
int x;
int y;
…

}

Rewrite equals
/** Return true iff this and ob are of the same
* class type, their x fields are equal, and
* their y fields are equal. */

public boolean equals(Object ob) {…} b and c are
different Pt
objects but

b.x = c.x
b.y = c.y

Because b and c are equal, only one of
them should be put in the set

In Java, functions hashCode and equals

What we learn from this

0 1 2 3 4

b
c

Class Pt {
int x;
int y;
…

}

Function hashCode has to be defined so that:

if b.equals(c) is true,
then b.hashCode() == c.hashCode()

so that b and c hash to the same index.
The test for equality of c and b will show it’s
already in.

In Java, functions hashCode and equals

Elements of set HashSet have class type, e.g. Pt

0 1 2 3 4

b
c

Class Pt {
int x;
int y;
…

}

Rewrite equals
/** Return true iff this and ob are of the same
* class type, their x fields are equal, and
* their y fields are equal. */

public boolean equals(Object ob) {…} b and c are
different Pt
objects but

b.x = c.x
b.y = c.y

public int hashCode() {
return abs(x + y);

}

Load Factor
31

Load factor

0 1

waste of
memory

too slow

best range

If load factor = ½, expected # of probes is 2.
What happens when the array becomes too full?
i.e. load factor gets a lot bigger than ½?

no longer expected
constant time operations

Chaining: Worst case time O(n)
32

Chaining worst case time

Suppose everything hashes to the last array element,
so that all array elements are null except the last, and
that last linked list has n elements in it ---the set has
size n.

In this case, operations add, contains, and remove
all take time O(n). That’s the worst case.

8999 nulls, 1 list of size 6000
0 8999

Linear probing: Worst case time O(n)
33

Chaining worst case time

Suppose everything hashes to 0, so that b[0..n-1]
contains the set of elements and b[n..] are all null.

In this case, operations add, contains, and remove
all take time O(n). That’s the worst case.

n elements null null … null
0 n 8999

b

Chaining: Expected time if load factor small: O(1)

34

EXAMPLE. 6 elements, table
size 9, load factor 6/9

Consider searching for e ---not in the set.
Find average length of chain over all
possibilities.

e hashes to a number in 0..8 with equal
probability.

8 of the possibilities have length 0.
The other 1 possibility has length 6.

(8*0 + 1*6) / 9 = 6/9 (load factor)

Chaining: Expected time if load factor small: O(1)

35

Example. 6000 elements,
table size 9000,
load factor 6/9

Find average length of chain over all possibilities.

e hashes to a number in 0..8999 with equal probability.

8999 of the possibilities have length 0.
The other 1 possibility has length 6000.

(8999*0 + 1*6000) / 9000 = 6/9 (load factor)

8999 nulls, 1 list of size 6000
0 8999

Chaining: Expected time if load factor small: O(1)

36

Example: 6 elements, table size 9, load factor 6/9
Consider any configuration of a set with load factor 6/9.
The average chain length is the load factor: 6/9

Average chain length: 6/9

Chaining: Expected time if load factor small: O(1)

37

Searching for a value, whether in the set or not.
If the distribution of elements to buckets is sufficiently
uniform, the average cost of a lookup depends only on
the average number of elements per bucket.

That is: (size of set) / (size of array)

That’s the load factor!

Load factor .75: average of .75 elements per bucket
Load factor 1: average of 1 element per bucket
Load factor 2: average of 2 elements per bucket

Java HashMap uses chaining with load factor .75

Linear probing: Expected time, small load factor: O(1)

38

This analysis is more complicated, harder.
State without proof:

The number of probes (buckets examined) to insert a
value in a hash table with load factor lf is

1 / (1 - lf)

Choose lf = ½ and get average number of probes: 2

Resizing

When the load factor gets too big, create a new array
twice the size, move the values to the new array, and
then use the new array going forward

YOU DID THIS IN A5, method ensureSpace()!

Collections class ArrayList does the same.

Collections classes HashSet and HashMap resize
when the load factor becomes greater than .75, but you
can change it.

Resizing

¨ double the size*
¨ reinsert / rehash all

elements to new array
¨ Why not simply copy into

first half?

Solution: Dynamic resizing

*if using quadratic probing, use a prime >2n

index for an item is:
hash code mod table-size

Resizing takes constant amortized time
We bought a machine that
makes fizzy water.
The machine cost $100.

Make one glass of fizzy water:
glass cost $100.00.

Make 100 glasses of fizzy water:
Each glass cost $1.00.

Make 1,000 glasses:
Each glass cost 10 cents.

Amortizing cost of machine over
use of machine, over number of
operations “make a glass …”.

Amortizing the cost of resizing

Each element of the array took at most constant
time C (say) to add it to the set.

Double the size of the array:
Each element has to be rehashed into the
new array, taking time at most C.
So we say that the time for each element is
2C —we amortize the cost of resizing over
the time for the add operation.

42

Collision Resolution Summary

¨ store entries in separate
chains (linked lists)

¨ Uses more memory

¨ store all entries in table
¨ use linear or quadratic

probing to place items
¨ uses less memory

¨ clustering can be a problem
— need to be more careful
with choice of hash function

Chaining Open Addressing

43

Application: Hash Map

Map<K,V>{

void put(K key, V value);

void update(K key, V value);

V get(K key);

V remove(K key);

}
• Use the key for lookups
• Store the value

Example: key is the word, value is its definition

HashMap in Java

¨ Computes hash using key.hashCode()
¤ No duplicate keys

¨ Uses chaining to handle collisions

¨ Default load factor is .75

¨ Java 8 attempts to mitigate worst-case performance by
switching to a BST-based chaining!

45

Hash Maps in the Real World

¨ Network switches
¨ Distributed storage

¨ Database indexing

¨ Heaps with the ability to change a priority

¨ Index lookup (e.g. Dijkstra's shortest-path algorithm)
¨ Useful in lots of applications…

46

