SHORTEST PATH
ALGORITHM

TODAY I
WILL LIVE
IN THE
MOMENT

Type
shortest path
into the

JavaHyperText
Filter Field -

UNLESS THE MOMENT IS UNPLEASANT,
IN WHICH CASE I WILL EAT A COOKIE

Lecture 20

CS2110. Spring 2019

Dijkstra’ s shortest-path algorithm
Edsger Dijkstra, in an interview in 2010 (CACM):

... the algorithm for the shortest path, which I designed in about
20 minutes. One morning I was shopping in Amsterdam with my
young fiance, and tired, we sat down on the cafe terrace to drink a
cup of coffee, and I was just thinking about whether I could do

this, and I then designed the algorithm for the shortest path. As I
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische
Mathematik 1,269-271 (1959).

Visit for all sorts of information on Dijkstra and
his contributions. As a historical record, this is a gold mine.

1968 NATO Conference on Software Engineering

In Garmisch, Germany

- Academicians and industry people attended
For first time, people admitted they did not know what they
were doing when developing/testing software. Concepts,
methodologies, tools were inadequate, missing

- The term software engineering was born at this conference.

- The NATO Software Engineering Conferences:

Get a good sense of the times by reading these reports!

09/04/2019

Ab6. Implement shortest-path algorithm

One semester: mean time: 4.2 hrs, median time: 4.5hrs.
max: 30 hours !!!!
We give you complete set of test cases and a GUI to play with.
Don’t wait until the last minute. It’s easy to make a mistake, and
you may not be able to get help to find it.
Efficiency and simplicity of code will be graded.
Read handout carefully:
2. Important! Grading guidelines.
We demo it.

Dijkstra’ s shortest-path algorithm

Dijkstra describes the algorithm in English:

1 When he designed it in 1956 (he was 26 years old), most people
were programming in assembly language.

0 Only one high-level language: Fortran, developed by John
Backus at IBM and not quite finished.

No theory of order-of-execution time —topic yet to be developed.
In paper, Dijkstra says, “my solution is preferred to another one
... “the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs.
Numerische Mathematik 1,269-271 (1959).

4

1968 NATO Conference on
Software Engineering, Garmisch, Germany

Term “software engineering” coined for this conference
6

http://www.dijkstrascry.com
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html

09/04/2019

1968 NATO Conference on
Software Engineering, Garmisch, Germany

1968/69 NATO Conferences on Software Engineering

Beards
The reason why some people grow
aggressive tufts of facial hair
Is that they do not like to show
the chin that isn't there.
a grook by Piet Hein

Tony Hoare ~ David Gries

8

Edsger Dijkstra Niklaus Wirth

Dijkstra’ s shortest path algorithm
The n (> 0) nodes of a graph numbered 0..n-1.

Each edge has a positive weight.

wet(vl, v2) is the weight of the edge from node v1 to v2.
Some node v be selected as the start node.

Calculate length of shortest path from v to each node.

Use an array d[0..n-1]: for each node w, store in

d[w] the length of the shortest path from v to w. d[o]=2

0 d[1]=5
2 3 d21=6

d31=7

d[4]1=0

The loop invariant

Settled Frontier Far off
S F

(edges leaving the Far off set and
edges from the Frontier to the
Settled set are not shown)

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and d[s] is length of shortest v — s path.

2. For a Frontier node f, at least one v — f path contains only
settled nodes (except perhaps for f) and d[f] is the length of the

shortest such path v ._»._ .>._>‘f

3. All edges leaving S goto F.

Settled S This ed Another way of saying 3:
1S edge There are no edges from S
does not to the far-off set.
leave S! =

Theorem about the invariant

div] =0
dfa] = 1
db] =2
dic]=7

Settled Frontier Far off
2. For a Frontier node f, d[f] is length of shortest v — f path
using only Settled nodes (except for f).
Theorem. For a node f in F with minimum d value (over nodes in
F), d[f] is the length of a shortest path from v to f.
The theorem tells us that the shortest v -> b path over all
paths has length 2.
The theorem gives us no additional information about
v -> ¢ paths. 1

Settled Frontier Faroff Theorem about the invariant

S F
v t’— 31‘

1. For a Settled node s, d[s] is length of shortest v — s path.

2. For a Frontier node f, d[f] is length of shortest v — f path
using only Settled nodes (except for f).
3. All edges leaving S go to F.
Theorem. For a node f in F with minimum d value (over nodes in
F), d[f] is the length of a shortest path from v to f.
Case 1: visin S.
Case 2: v is in F. Note that d[v] is O; it has minimum d value

12

Settled Frontier Far off

S F Theorem. For a node f in F with

minimum d value (over nodes in
F), d[f] is the length of a shortest
path from v to f.

What does the theorem tell us about this frontier set?

(Cortland, 20 miles) (Dryden, 11 miles)
(Enfield, 10 miles) (Thurg, 15 miles)

Answer: The shortest path from the start node to
Enfield has length 10 miles.

Note: the following answer is incorrect because we haven’t
said a word about the algorithm! We are just investigating
properties of the invariant:

09/04/2019

The algorithm

S={}F={v}dvl= 0
S F Far off

1. For s, d[s] is length of
shortest v— s path.
2. For f, d[f] is length of
shortest v — f path using
red nodes (except for f).
3. Edges leaving Sgo to F.
Theorem: For a node fin F
with min d value, d[f] is Loopy question 1:
shortest path length How does the loop start? What
is done to truthify the invariant?

14

Enfield can be moved to the settled set. 13
The algorithm S= {};F= {v}:d[v]= O;
S F Far off

while (F= {}) {

1. For s, d[s] is length of
shortest v — s path.

2. For f, d[f] is length of
shortest v — f path using
red nodes (except for f).

3. Edges leaving Sgoto F.

Theorem: For a node fin F

with min d value, d[f] is Loopy question 2:

The algorithm S= { };F= {v};d[v]=0;
S F Faroff while(F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
1. For s, d[s] is length of
shortest v — s path.
2. For f, d[f] is length of
shortest v — f path using
red nodes (except for f).

3. Edges leaving Sgoto F.
Theorem: Foranode finF }
with min d value, d[f] is
shortest path length
Loopy question 3: Progress toward termination?

16

shortest path length ‘When does loop stop? When is
array d completely calculated?
15
The algorithm S= {};F= {v};d[v]=0;

S F Faroff while (F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (wnotin S or F) {

1. For s, d[s] is length of
shortest v — s path.

2. For f, d[f] is length of
shortest v — f path using

}else {
red nodes (except for f).
3. Edges leaving Sgoto F.
Theorem: For a node fin F }
with min d value, d[f] is }
shortest path length }

Loopy question 4: Maintain invariant?
17

The algorithm S= {};F= {v};d[v]=0;
S F Faroff while(F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (wnot in S or F) {
d[w]= d[f] + wgt(f, w);
addwto F;
}else {

1. For s, d[s] is length of
shortest v — s path.

2. For f, d[f] is length of
shortest v — f path using
red nodes (except for f).

3. Edges leaving Sgoto F.

Theorem: For anode fin F }
with min d value, d[f] is }
shortest path length }

Loopy question 4: Maintain invariant?
18

The algorithm S= {};F= {v};d[v]=0;
S F Faroff while(F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (wnotin S or F) {
d[w]= dI[f] + wgt(f, w);
addwtoF;
} else
if (d[f] + wgt (f.w) <d[w]) {
d[w]=d[f] + wgt(f, w);

1. For s, d[s] is length of
shortest v — s path.

2. For f, d[f] is length of
shortest v — f path of form
O =p@==po=p@ |

3. Edges leaving S goto F.

Theorem: For a node fin F ¥
with min d value, d[f] is its

shortest path length
Algorithm is finished!

19

09/04/2019

Extend algorithm to include the shortest path

Let’s extend the algorithm to calculate not only the length
of the shortest path but the path itself.

do] =2
dl1]=5
d2]=6
di31=7
d[4]=0

Extend algorithm to include the shortest path

Question: should we store in v itself the shortest path from v to
every node? Or do we need another data structure to record

these paths?
v 0 Not finished!
0> 1 And how do

0=»2 wemaintain it?

djo]=2
d[1]=5
d21=6
d31=7
d[4]1=0

Extend algorithm to include the shortest path

For each node, maintain the backpointer on the shortest

path to that node.
Shortest path to 0 is v -> 0. Node 0 backpointer is 4.

Shortest path to 1 is v -> 0 -> 1. Node 1 backpointer is 0.
Shortest path to 2 is v -> 0 -> 2. Node 2 backpointer is 0.
Shortest path to 3 is v -> 0 -> 2 -> 1. Node 3 backpointer is 2.

bk[w] is w’s backpointer
d[0]=2 bk[0] =4

di]=5 bk[1]=0
di2]=6 bk[2]=0

v d31=7 bk[3] =2
d[41=0 bk[4] (none)

S F Far off

IMaintain backpointers

S= {};F= {v}; dlv]=0;
while (F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (wnot in S or F) {
d[w]= d[f] + wgt(f, w); *—>-0->-¢—p9
addwtoF; hl\lg\\ I= f; M v
} else if (d[f] + wgt (fw) <d[w]) { | Whenw in S or F and
d[w]=d[f] + wgt(f, w); have shorter path to
bk[w]= f; .

A
) e

Wow! It’s so easy to
maintain backpointers!

When w not in S or F:
Getting first shortest path so
far:

S ul Far off This is our final high-level

algorithm. These issues and

§= {}:F= {v} divl=0: questions remain:

while (F# {}) { 1. How do we implement F?
f=node in F with min d value; 2. The nodes of the graph
Remove f from F, add it to S; will be objects of class
for each neighbor w of f { Node, not ints. How will

if (wnotin S or F) { we maintain the info in
diwl= d[f] + wgt(f, w); arrays d and bk?

w

add w to F; bk[w]= f; How do we tell quickly
}else if (d[f]+wgt (f,w) < d[w]) { whether w is in S or F?

dwl= d[f] + wet(f, w; How do we analyze
bk[wl= f: execution time of the
’ algorithm?

b3

24

S F Far off
S= { }; F= {v}; dlv]=0;
while (F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (wnotin S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;
} else if (d[f]l+wgt (f,w) < d[w]) {
d[w]=d[f] + wgt(f, w);

09/04/2019

I 1. How do we implement F?

bk[w]= f;

Use a min-heap, with the
priorities being the distances!

Distances ---priorities--- will
change. That’s why we need

changePriority in Heap.java

bos

S F Far off
S={}; F= {v}; dlvl=0;
while (F# {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (wnotin S or F) {
dlw]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (fw) < d[w]) {

d[w]=d[f] + wgt(f, w);
bk[w]= f;

b3

For what nodes do we need a
distance and a backpointer?

26

S F Far off
S= {}; F= {v}; dlv]=0;
while (F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;
} else if (d[f]+wgt (f,w) < d[w]) {
d[w]=d[f] + wgt(f, w);
bk[w]= f;

o

For what nodes do we need a
distance and a backpointer?

For every node in S and
every node in F we need both
its d-value and its
backpointer (null for v)

Instead of arrays d and b,
keep information associated
with a node. Use what data

structure for the two values?

S F Far off
S={}; F={v}; dIv]=0;
while (F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (wnot in S or F) {
diw]= d[f] + wgt(f, w);
add w to F; bk[w]= f;
} else if (d[f]+wgt (f,w) < d[w]) {
d[w]=d[f] + wgt(f, w);
bk[w]= f;

o

For what nodes do we need a
distance and a backpointer?

For every node in S and
every node in F we need both
its d-value and its
backpointer (null for v)

public class DB {
private int dist;
private node bkptr;

}

S F Far off
S={}; F= {v}; dlv]=0;
while (F= {}) {
f=node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (wnot in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;
} else if (d[f]l+wgt (f,w) <d[w]) {
d[w]=d[f] + wgt(f, w);
bk[w]= f;

bos

F implemented as a heap of
Nodes.

What data structure to use to
maintain a DB object for
each node in S and F?

For every node in S or F we
need both its d-value and its
backpointer (null for v):

public class DB {
private int dist;
private node bkptr;

S F Far off

S= {};F= {v}; dlv]=0;

Given a node in S or F, we need
to gets its DB object quickly.
What data structure to use?

while (F# {}) {
f=node in F with min d value;

Remove f from F, add it to S; [HashMap<Node, DB > info

for each neighbor w of f {

if (wnotin S or F) {
dlw]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

F: implemented as a min-heap.

Implement this algorithm.

info: replaces S, d, b

} else if (d[f]+wgt (fw) < d[w]) {
d[w]=d[f] + wgt(f, w);
bk[w]= f;

¥

i3 Final abstract algorithm

public class DB {
private int dist;
private node bkptr;

09/04/2019

S F Far off

S= { };F= {v}; dlv]=0;
while (F= {}) {

Investigate execution time.
Important: understand algorithm
well enough to easily determine
the total number of times each

f=node in F with min d value; | part is executed/evaluated

Remove f from F, add it to S;

for each neighbor w of f {
if (wnotin S or F) {
diwl= d[f] + wgt(f, w);

Assume:
n nodes reachable from v
e edges leaving those n nodes

add w to F; bk[w]= f;
} else if (d[f]l+wgt (f,w) <d[w]) {
d[w]=d[f] + wgt(f, w);

public class DB {

Assume:
n nodes reachable from v

e edges leaving the n nodes

S F Far off
S={} F= {v}; dIv]=0; 1x
while (F# {}) { true n x

f=node in F with min d value; nXx
Remove f fromF,addittoS; nX
for each neighbor w of f {

if (wnotin S or F) {

Question. How many times
does F# {} evaluate to
true?

To false?

dlw]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (fw) < d[w]) {
d[w]=d[f] + wgt(f, w);

public class DB {

bk[w]= f; . o
private int dist;

y private node bkptr;

1 IHashMap<N0de, DB> info
} 31
S F Far off Directed graph
n nodes reachable from v

S= { }; F= {v}; d[v]=0; Ix fe edges leaving the n nodes
while (F= {}) { true n x

f=node in F with min d value; nx

Remove f fromF,addittoS; nXx
for each neighbor w of f { em—
if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

Harder: In total, how many
times does the loop
for each neighbor w of f

find a neighbor and execute
the repetend?

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]=d[f] + wgt(f, w);

public class DB {

bk[w]= f; . s
private int dist;
} private node bkptr;
1 IHashMap<Node, DB> info I
} 32
S F Far off Directed graph
n nodes reachable from v

S= {} F= {v} dIvI=0; Ix e edges leaving the n nodes
while (F= {}) { true n x

f=node in F with min d value; nx

Remove f from F, add it to S; nx
for each neighbor W Of f { em—
if (wnot in S or F) {
diw]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

Harder: In total, how many
times does the loop
for each neighbor w of f

find a neighbor and execute
the repetend?

} else if (d[f]+wgt (f.w) <d[w]) {

bk[w]= f; . Lo
private int dist;
¥ private node bkptr;
b3 IHashMap<Nodc, DB> info
} 33
S F Far off Directed graph
15 |m nodes reachable from v

S= {};F= {v}; d[v]=0; * | e edges leaving the n nodes
while (F= {}) { true n x

f=node in F with min d value; nXx
Remove f fromF,addittoS; nX
for cach neighbor w of f { true e x
if (wnot in S or F) €X
d[w]= d[f] + wgt(f, w); n-1x
add wto F; bk[w]= f; -1 X
Y else if (d[f]+wgt (f.w) < d[w]) {
d[w]=d[f] + wgt(f, w);

How many times does
wnot in S or F
evaluate to true?

bk[w]= f; | Answer: If wisnotin S or F, it is in the far-off
} set. When the main loop starts, n-1 nodes are in
13 the far-off set. If w is in the far-off set, it is

immediately put into w. Answeg: n-1 times.

d[w]= d[f] + wet(f, w); Answer: The for-each statement
bk[w]= f; |is executed ONCE for each node. During that
) execution, the repetend is executed once for
each neighbor. In total then, the repetend is
I executed once for each neighbor of each node.
A total of e times. h
S F Far off Directed graph
n nodes reachable from v
S= {};F= {v}; dlvl=0; Ix e edges leaving the n nodes
while (F= {}) { true n x

f=node in F with min d value; nx
Remove f from F, add it to S; nx
for each neighbor w of f { true e x
if (wnotin S or F) { ex
d[wl= d[f] + wgt(f, w); n-1x

add wto F; bk[w]= f; D-1 X

How many times is the

} else if(d[ﬂ-rwst LW SUWIT L
d[w]=d[f] + wt(f, w);

if-statement executed?

bk[w]= f; | Answer: The repetend is executed e times. The
} if-condition in the repetend is true n-1 times.
;3! So the else-part is executed e-(n-1) times.
Answer: et1-n times.

6

09/04/2019

S F Far off Directed graph
15 |m nodes reachable from v
S= {};F= {v}; d[v]=0; * | ¢ edges leaving the n nodes
while (F= {}) { true n x

f=node in F with min d value; nXx
Remove f fromF,addittoS; nX
for cach neighbor w of f { true e x
if (wnotin S or F) { €Xx
d[wl= d[f] + wgt(f, w); n-1x
add wto F; bk[w]= f; -1x
Y else if (d[f]+wgt (f,w) <d[w]) { ¢TI0 X
d[w]= d[f] + wgt(f, w); How many times is the if-

S F Far off Directed graph
n nodes reachable from v
S= {};F= {v}; dlvl=0; Ix e edges leaving the n nodes
while (F% {}) { true n x | Expected-case analysis

f=node in F with min d value; nXx

Remove f fromF,additto S; 1 X | We know how often each
for each neighbor w of f { true e x |statement is executed.
if (wnotin S or F) { ex |Multiply by its O(...) time

d[wl= d[f] + wgt(f, w); n-1x
add wto F; bk[w]= f; m-1x

} else if (d[fl+wgt (Fw) < d[w]) { ¢FI-n X
d[wl=d[f] + weu(f, wy; ¢
bk[w]= f; et+1-n x

b3

bk[w]= f; condition true and d[w] changed?
¥ Answer: We don’t know. Varies.
I expected case: e+1-x times.

S ¥ Far oft Directed graph
S= { };F= {v}; d[vI=0; 1x O(1) nb‘}"‘}res reach-
while (F# {}) { truenx O(n) 2 cggc;nllz:ving

f=node in F with min d value; 1 x O(n) the n nodes

Remove f fromF,add itto S; 1 x O(nlogn) Expected-case

for each neighbor w of £ { true e x O(e) analysis

if (wnot in S or F) { ex O(e)

diwl= d[f] + wgt(f, w); n-1x O(n)
add w to F; bk[w]= f; 1-1x O(nlogn)

Y else if (d[f]+wgt (f,w) <d[w]) { eFl-nx O(e-n)
d[w]=d[f] + wet(f, w); €T11X O((e-n) logn)
bk[w]= f; etl-nx O(e-n)

‘We know how often each statement is

o
executed. Multiply by its O(...) time

S F Far off

S= {1 F= {v}; dIv]=0; Ix O()
while (F= {}) { true nx O(n)
f=node in F with min d value; nx O(n)
Remove f from F,add itto S; 1 x O(n log n)
for each neighbor w of £ { true e x QO(e)
if (wnot in S or F) { ex O(e)
d[wl= d[f] + wgt(f, w); -1 x O(n)
add w to F; bk[w]= f; D0-1x O(nlogn)
} else if (d[f]+wgt (fw) < d[w]) { etl-nx O(e-n)
d[wl=d[f] + wet(f, w); €1 1X O((e-n)logn). 1
bk[w]= f; etl-nx O(e-n) 10

¥ IDense graph, so e close to n*n: Line 10 gives O(n2 log n) I

1
2
3
4
5
6

7
8
9
0

B I Sparse graph, so e close ton: Line 4 gives O(n log n) I

