
3/27/19

1

GRAPH ALGORITHMS
Lecture 19
CS 2110 — Spring 2019

JavaHyperText Topics

“Graphs”, topics:
¨ 4: DAGs, topological sort
¨ 5: Planarity
¨ 6: Graph coloring

2

Announcements

Monday after Spring Break there will be a CMS quiz
about “Shortest Path” tab of JavaHyperText. To
prepare:
¨ Watch the videos (< 15 min) and their associated

PDFs (in total 5 pages)
¨ Especially try to understand the loop invariant and

the development of the algorithm

3

Announcements

¨ Yesterday, 2018 Turing Award Winners announced

¨ Won for deep learning with neural networks
¤ Facial recognition
¤ Talking digital assistants
¤Warehouse robots

¤ Self-driving cars
¤…see NYTimes article

4

Neural networks are graphs!

Neural Network
5

Neurons in brain receive input, maybe fire and activate other neurons

Neural Network
6

Input layer

Hidden layers

Ouput layer

https://amturing.acm.org/
https://www.nytimes.com/2019/03/27/technology/turing-award-ai.html

3/27/19

2

Sorting7

CS core course prerequisites
8

2110

2800

3110

3410 4410

4820

(simplified)

1110

Problem: find an order in which you can
take courses without violating prerequisites

e.g. 1110, 2110, 2800, 3110, 3410, 4410, 4820

Topological order

A topological order of directed graph G is an
ordering of its vertices as v1, v2, …, vn, such that for
every edge (vi, vj), it holds that i < j.

9

2110

2800

3110

3410 4410

48201110

Intuition: line up the vertices with all edges pointing
left to right.

Cycles

¨ A directed graph can be topologically ordered if
and only if it has no cycles

¨ A cycle is a path v0, v1, ..., vp such that v0 = vp

¨ A graph is acyclic if it has no cycles
¨ A directed acyclic graph is a DAG

A

B C

DE

A

B C

DE

DAG Not a DAG

10

Is this graph a DAG?

¨ Deleting a vertex with indegree zero would not
remove any cycles

¨ Keep deleting such vertices and see whether graph
“disappears”

F

B

A

C

D

E

Yes!
It was a DAG.

11

And the order in which we removed vertices was a topological order!

k= 0;
// inv: k nodes have been given numbers in 1..k in such a way that

if n1 <= n2, there is no edge from n2 to n1.
while (there is a node of in-degree 0) {

Let n be a node of in-degree 0;
Give it number k;
Delete n and all edges leaving it from the graph.
k= k+1;

}

JavaHyperText shows how to
implement efficiently:
O(V+E) running time. F

B

A

C

D

E0
3

3

1

2

2à

à1

à2

A
B
C
D
E
F

0

0

1

0k= à1

Algorithm: topological sort
12

3/27/19

3

Graph Coloring13

Map coloring

How many colors are needed to ensure adjacent
states have different colors?

14

Graph coloring

Coloring: assignment of color to each vertex.
Adjacent vertices must have different colors.

A

B

C

D

E

F

How many colors needed?

15

A

B

C

D

E

F

Uses of graph coloring
16

And more! http://ijcit.org/ijcit_papers/vol3no2/IJCIT-130101.pdf

How to color a graph

void color() {
for each vertex v in graph:

c= find_color(neighbors of v);
color v with c;

}
int find_color(vs) {

int[] used;
assign used[c] the number of vertices in vs that are colored c

return smallest c such that used[c] == 0;
}

17

Assume colors are integers 0, 1, …

How to color a graph

void color() {
for each vertex v in graph:

c= find_color(neighbors of v);
color v with c;

}
int find_color(vs) {

int[] used= new int[vs.length() + 1];
for each vertex v in vs:

if color(v) <= vs.length():
used[color(v)]++;

}
return smallest c such that used[c] == 0;

}

18

Assume colors are integers 0, 1, …

If there are d
vertices, need at

most d+1
available colors

http://ijcit.org/ijcit_papers/vol3no2/IJCIT-130101.pdf

3/27/19

4

Analysis

void color() {
for each vertex v in graph:

c= find_color(neighbors of v);
color v with c;

}
int find_color(vs) {

int[] used= new int[vs.length() + 1];
for each vertex v in vs:

if color(v) <= vs.length():
used[color(v)]++;

}
return smallest c such that used[c] == 0;

}

19

Time: O(vs.length())

Time: O(# neighbors of v)

Total time: O(E)

Analysis

void color() {
for each vertex v in graph:

c= find_color(neighbors of v);
color v with c;

}
int find_color(vs) {

int[] used= new int[vs.length() + 1];
for each vertex v in vs:

if color(v) <= vs.length():
used[color(v)]++;

}
return smallest c such that used[c] == 0;

}

20

Use the minimum
number of colors?

Maybe! Depends
on order vertices

processed.

Analysis
21

Source: https://en.wikipedia.org/wiki/Grundy_number#/media/File:Greedy_colourings.svg

Vertices labeled in order of processing

Best coloring Worst coloring

Only 2 colors needed for this special kind of graph…

Bipartite graphs

Bipartite: vertices can be
partitioned into two sets such that
no edge connects two vertices in the
same set

Matching problems:
¨ Med students & hospital

residencies
¨ TAs to discussion sections
¨ Football players to teams

1

2

3

A

B

C

D

Fact: G is bipartite
iff G is 2-colorable

22

Four Color Theorem

Every “map-like” graph is 4-colorable
[Appel & Haken, 1976]

23

Four Color Theorem

Proof required checking that 1,936 special graphs
had a certain property

¤Appel & Haken used a computer program to check the
1,936 graphs

¤Does that count as a proof?

¤Gries looked at their computer program and found an
error; it could be fixed

In 2008 entire proof formalized in Coq proof
assistant [Gonthier & Werner]: see CS 4160

https://en.wikipedia.org/wiki/Grundy_number

3/27/19

5

Four Color Theorem

Every “map-like” graph is 4-colorable
[Appel & Haken, 1976]

…“map-like”?
= planar

25

Planar Graphs26

Planarity

A graph is planar if it can be drawn in the plane
without any edges crossing

A

B

C

D

E

F

Discuss: Is this graph planar?

27

Planarity

A graph is planar if it can be drawn in the plane
without any edges crossing

A

B

C

D

E

F

28

Discuss: Is this graph planar?

Planarity

A graph is planar if it can be drawn in the plane
without any edges crossing

A

B

C

D

E

F

Discuss: Is this graph planar?
YES!

29

Detecting Planarity

Kuratowski's Theorem:

A graph is planar if and only if it does not contain a
copy of K5 or K3,3 (possibly with other nodes along the
edges shown).

K5 K3,3

30

3/27/19

6

John Hopcroft & Robert Tarjan

¨ Turing Award in 1986 “for fundamental
achievements in the design and analysis of
algorithms and data structures”

¨ One of their fundamental achievements was a O(V)
algorithm for determining whether a graph is
planar.

31

David Gries & Jinyun Xue

Tech Report, 1988
Abstract: We give a rigorous, yet, we hope, readable,
presentation of the Hopcroft-Tarjan linear algorithm for
testing the planarity of a graph, using more modern
principles and techniques for developing and presenting
algorithms that have been developed in the past 10-12
years (their algorithm appeared in the early 1970's).
Our algorithm not only tests planarity but also constructs
a planar embedding, and in a fairly straightforward
manner. The paper concludes with a short discussion of
the advantages of our approach.

32

33

Happy Spring Break!

Java Island, Southeast Asia

