3/26/19

JavaHyperText Topics

| B2
“Graphs”, topic 8: DFS, BFS

GRAPH TRAVERSAL

Graph Representations
jem

(improved definitions in Lec 17)

Graph Search Graph Traversal
| Rl
Goa!: visit each vertex \/\2/‘/:/\ 3
that is reachable from 1
some starting vertex) . N .
J\N\;\‘;\////
-, X
8
=
And: even if there are -
many paths to a node, f
visit only once 4
///‘d
'
Two algorithms: DFS, BFS \o 2

3/26/19

Depth-First Search
e

. Idea: Recursively visit each unvisited neighbor I
Depth-First Search (DFS)

/** Visit every node reachable along a path of
unvisited nodes from node v.
Precondition: v is unvisited. */

Intuition: one person exploring a maze

void dfs (Vertex v) {
mark v visited;
for all edges (v,u):
if u is unmarked:
dfs (u) ;

|dfs('|) visits the nodes in this order: 1, 2, 3, 5,7, 8

Depth-First Search

Poll #1

/** Visit every node reachable along a path of
unvisited nodes from node v.
Precondition: v is unvisited. */

void dfs (Vertex v) {
mark v visited;
for all edges (v,u):
if u is unmarked:
dfs (u) ;

Demo
DFS Space Efficiency DFS Time Efficiency
| ==
void dfs (Vertex v) { void dfs(Vertex v) {
mark v visited; Suppose graph has mark v visited; Suppose graph has
for all edges (v,u): V vertices and E edges for all edges (v,u): V vertices and E edges
if u is unmarked: if u is unmarked:
dfs (u); dfs (u) ;
} }

Space required?
* Mark for each vertex: O(V)

* Frame for each recursive call: O(V)

Time required?
° Mark each vertex: O(V)
* Recursive call for on each unvisited vertex: O(V)
* Find each edge
¢ in adj list: O(E): Worst case: O(V+E)
* In adj matrix: O(V2): Worst case: O(V2)

Worst case: O(V)

3/26/19

Variant: lterative DFS
55

Same algorithm; non-recursive implementation I - B 5
readth-First Search (BFS)

void dfs(Vertex u) {
Stack s= new Stack();

Intuition: Search party fanning out in all

s.push (u) ; . .
while (s is not empty) { directions
u= s.pop();
if (u not visited) {
visit u;
for each edge (u, v):
s.push(v) ;
} 8
} 5
} 5
u: Stack: | Demo

Visit order was 1,7, 8, 5, 2, 3: differs from before because of order edges processed

Breadth-First Search Breadth-First Search
| 5] | 16|
Idea: Iteratively process the graph in "layers" moving further Idea: lteratively process the graph in "layers" moving further
away from the source vertex. away from the source vertex.
/** Visit all vertices reachable on
unvisited paths from u. */
void bfs(int u) {
Queue g= new Queue ()
qg.add(u) ;
while (g is not empty) {
u= q.remove () ;
if (u not visited) {
visit u;
for each (u, v):
q.add(v);
}
! eIILIEY 2 5 7 3 5 8 5
! Visit order was 1,2, 5.7, 3,8 Demo |
Improved BFS
| EE T
Idea: Don't put vertex in queue if already encountered |
17 | Poll #2

/** Visit all vertices reachable on
unvisited paths from u. */
void bfs (int u) {
Queue g= new Queue
q.add (u);
while (g is not empty) {
u= g.remove () ;
if (u not wvisited) {

visit u;
for each (u, v):
if (v not encounte
nar} as encc
q.add(v);

Analyzing BFS

/** Visit all vertices reachable on
unvisited paths from u. */

void bfs(int u) { Same as DFS.
Queue g= new Queue Space: O(V)
g.add(u); Time:

while (g is not empty) {
u= g.remove () ;

* Adj list: O(V+E)
* Adj matrix: O(V?)

if (u not visited) {
visit u;
for each (u, v):

if (v not encountered) ({

mark v as encountered;
q.add(v) ;

3/26/19

Comparing Traversal Algorithms
a
o Time: O(V4E) or O(V?)

o Time: O(V+E) or O(V?)
o Space: O(V)

o Space: O(V)

*Without improvement, space becomes O(E)

