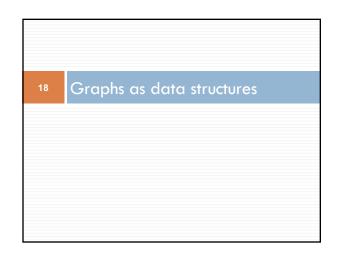
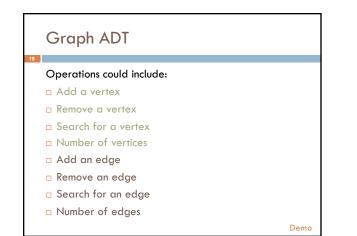
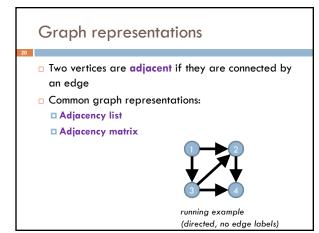
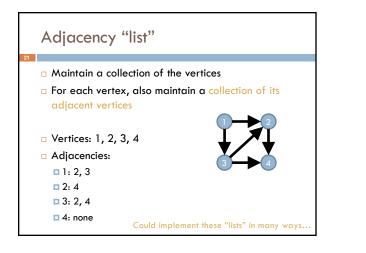

Paths

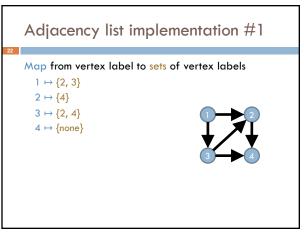
- $\label{eq:product} \begin{array}{l} \label{eq:product} A \mbox{ path is a sequence } v_0,v_1,v_2,...,v_p \mbox{ of vertices such that for } 0 \leq i < p, \\ \hline \mbox{ Directed: } (v_i,v_{i+1}) \in E \\ \hline \mbox{ Undirected: } \{v_i,v_{i+1}\} \in E \end{array}$
- □ The length of a path is its number of edges

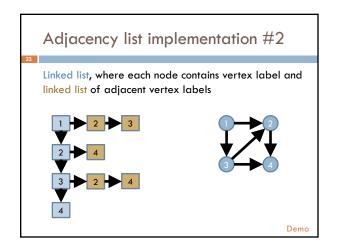


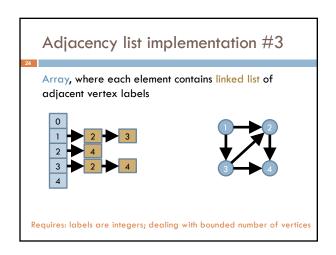


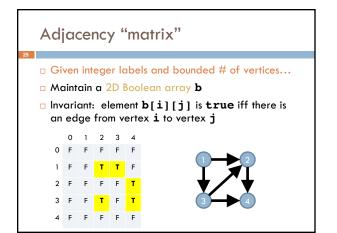


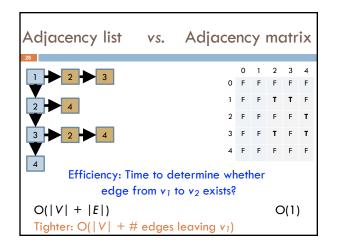


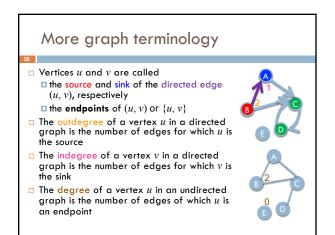












Adjacency list vs. Adj	ace	nc	y	mo	atr	ix
		0		2		4
	0	F	F	F	F	F
	1	F	F	т	T	F
	2	F	F	F	F	т
3 2 4	3	F	F	т	F	т
	4	F	F	F	F	F
4 Efficiency: Space to store?						
O(V + E)			0	()	/ ²)

Adjacency list	VS.	Adja	ce	nc	зy	mo	atr	ix
2/				0	1	2	2	
1 🗭 2 🗭 3			0	-	F			
\mathbf{V} — —			0					
2 - 4			1	F	F	т	т	F
			2	F	F	F	F	т
3 2 4			3	F	F	T	F	т
			4	F	F	F	F	F
4								
Efficiency: Time to visit all edges?								
O(V + E)					0	()	/ 2)

Adjacency list vs	. Adjace	nc	y	mo	atr	ix
		0	1	2	3	4
	0	F	F	F	F	F
	1	F	F	т	т	F
	2	F	F	F	F	т
3 2 4	3	F	F	т	F	т
	4	F	F	F	F	F
4 Efficiency: Time to determine whether edge from v ₁ to v ₂ exists?						
O(V + E)				O(1)		
Tighter: O(V + outdegree(v1))						

List	Property	Matrix
O(V + E)	Space	O(V ²)
O(V + E)	Time to visit all edges	O(V ²)
$O(V + od(v_1))$	Time to find edge (v_1, v_2)	O(1)
$J(v + od(v_1))$	Time to find edge (v1,v2)	0(1)

Adjacency li	ist vs. Adjace	ncy matrix
List	Property	Matrix
O(V + E)	Space	O(V ²)
O(V + E)	Time to visit all edges	O(V ²)
$O(V + od(v_1))$	Time to find edge (v1,v2)	O(1)
. • .	¥	Max # edg
Sparse	Der	ise

Adjacency list vs. Adjacency matrix				
List	Property	Matrix		
O(V + E)	Space	O(V ²)		
O(V + E)	Time to visit all edges	O(V ²)		
$O(V + od(v_1))$	Time to find edge (v_1, v_2)	O(1)		
•••• ••• ••• ••• ••• ••• ••• ••• ••• •				
Sparse: $ E \ll V ^2$ Dense: $ E \approx V ^2$				

Adjacency list vs. Adjacency matrix				
List	Property	Matrix		
O(V + E)	Space	O(V ²)		
O(V + E)	Time to visit all edges	O(V ²)		
$O(V + od(v_1))$	Time to find edge (v1,v2)	O(1)		
Sparse graphs	Better for	Dense graphs		
Max # edges = V ²				
Sparse: $ E \ll V ^2$ Dense: $ E \approx V ^2$				