
3/21/19

1

GRAPHS
Lecture 17
CS 2110 — Spring 2019

JavaHyperText Topics

“Graphs”, topics 1-3
¨ 1: Graph definitions
¨ 2: Graph terminology
¨ 3: Graph representations

2

Charts (aka graphs) Graphs

¨ Graph:
¤ [charts] Points connected by curves
¤ [in CS] Vertices connected by edges

¨ Graphs generalize trees
¨ Graphs are relevant far beyond CS…examples…

5

4 2

7 8 9

Vertices: people “from”
Edges: friendshipshttps://medium.com/@johnrobb/facebook-the-complete-

social-graph-b58157ee6594

Vertices: subway stops
Edges: railways

3/21/19

2

Vertices: stations
Edges: cableshttps://www.submarinecablemap.com/

http://www.cs.cmu.edu/~bryant/
boolean/maps.html

Vertices: State capitals
Edges: “States have shared border”

Graphs as mathematical structures9

Undirected graphs

An undirected graph is a pair (V, E) where
¨ V is a set

¤ Element of V is called a vertex or node

¤ We’ll consider only finite graphs

¤ Ex: V = {A, B, C, D, E}; |V| = 5

¨ E is a set
¤ Element of E is called an edge or arc
¤ An edge is itself a two-element set {u, v} where {u, v} ⊆ V

¤ Often require u ≠ v (i.e., no self-loops)

¤ Ex: E = {{A, B}, {A, C}, {B, C}, {C, D}}, |E| = 4

A

B C

DE

Directed graphs

A directed graph is similar except the edges are pairs
(u, v), hence order matters

A

B C

DE

V = {A, B, C, D, E}
E = {(A, C), (B, A), (B, C), (C, D), (D, C)}
|V| = 5
|E| = 5

Convert undirected ßà directed?

¨ Right question is: convert and maintain which
properties of graph?

¨ Convert undirected to directed and maintain paths?

12

3/21/19

3

Paths

¨ A path is a sequence v0,v1,v2,...,vp of vertices such
that for 0 ≤ i < p,
¤ Directed: (vi, vi+1) ∈ E
¤ Undirected: {vi, vi+1} ∈ E

¨ The length of a path is its number of edges

A

B C

DE

Path: A,C,D

Convert undirected ßà directed?

¨ Right question is: convert and maintain which
properties of graph?

¨ Convert undirected to directed and maintain paths:
¤ Nodes unchanged

¤ Replace each edge {u,v} with two edges {(u,v), (v,u)}

¨ Convert directed to undirected and maintain paths:
Can’t:

14

A B

Labels

Whether directed or undirected, edges and vertices
can be labeled with additional data

A

B C

DE

Nodes already
labeled with
characters

5

-3
1

2
1 Edges now

labeled with
integers

Discuss

How could you represent a maze as a graph?
16

Algorithms, 2nd ed., Sedgewick, 1988

Announcement

A4: See time distribution and comments @735
¨ Spending >16 hours is a problem; talk to us or a TA about

why that might be happening

¨ Comments on the GUI:
¤ “GUI was pretty awesome.”
¤ “I didn't see the relevance of the GUI.”

¨ Hints:
¤ “Hints were extremely useful and I would've been lost without them.”
¤ “Hints are too helpful. You should leave more for people to figure out on

their own.”

¨ Adjectives:
¤ “Fun” (x30), “Cool” (x19)

¤ “Whack”, “Stressful”, “Tedious”, “Rough”

17

Graphs as data structures18

3/21/19

4

Graph ADT

Operations could include:
¨ Add a vertex
¨ Remove a vertex
¨ Search for a vertex
¨ Number of vertices
¨ Add an edge
¨ Remove an edge
¨ Search for an edge
¨ Number of edges

19

Demo

Graph representations

¨ Two vertices are adjacent if they are connected by
an edge

¨ Common graph representations:
¤ Adjacency list

¤ Adjacency matrix

20

1 2

3 4

running example
(directed, no edge labels)

Adjacency “list”

¨ Maintain a collection of the vertices
¨ For each vertex, also maintain a collection of its

adjacent vertices

¨ Vertices: 1, 2, 3, 4
¨ Adjacencies:

¤ 1: 2, 3
¤ 2: 4
¤ 3: 2, 4

¤ 4: none

21

1 2

3 4

Could implement these “lists” in many ways…

Adjacency list implementation #1

Map from vertex label to sets of vertex labels
1 ↦ {2, 3}
2 ↦ {4}

3 ↦ {2, 4}
4 ↦ {none}

22

1 2

3 4

Adjacency list implementation #2

Linked list, where each node contains vertex label and
linked list of adjacent vertex labels

23

1

2

3

4

3

4

42

2 1 2

3 4

Demo

Adjacency list implementation #3

Array, where each element contains linked list of
adjacent vertex labels

24

1

2

3

4

3

4

42

2
1 2

3 4

0

Requires: labels are integers; dealing with bounded number of vertices

3/21/19

5

Adjacency “matrix”

¨ Given integer labels and bounded # of vertices…
¨ Maintain a 2D Boolean array b
¨ Invariant: element b[i][j] is true iff there is

an edge from vertex i to vertex j

25

0 1 2 3 4

0 F F F F F

1 F F T T F

2 F F F F T

3 F F T F T

4 F F F F F

1 2

3 4

Adjacency list vs. Adjacency matrix
26

1

2

3

4

3

4

42

2

Efficiency: Space to store?

O(|V| + |E|) O(|V|2)

0 1 2 3 4

0 F F F F F

1 F F T T F

2 F F F F T

3 F F T F T

4 F F F F F

Adjacency list vs. Adjacency matrix
27

1

2

3

4

3

4

42

2

Efficiency: Time to visit all edges?

O(|V| + |E|) O(|V|2)

0 1 2 3 4

0 F F F F F

1 F F T T F

2 F F F F T

3 F F T F T

4 F F F F F

Adjacency list vs. Adjacency matrix
28

1

2

3

4

3

4

42

2

Efficiency: Time to determine whether
edge from v1 to v2 exists?

O(|V| + |E|) O(1)

0 1 2 3 4

0 F F F F F

1 F F T T F

2 F F F F T

3 F F T F T

4 F F F F F

Tighter: O(|V| + # edges leaving v1)

More graph terminology
29

¨ Vertices u and v are called
¤ the source and sink of the directed edge

(u, v), respectively
¤ the endpoints of (u, v) or {u, v}

¨ The outdegree of a vertex u in a directed
graph is the number of edges for which u is
the source

¨ The indegree of a vertex v in a directed
graph is the number of edges for which v is
the sink

¨ The degree of a vertex u in an undirected
graph is the number of edges of which u is
an endpoint

A

B
C

DE

A

B C

DE

2
1

2

0

Adjacency list vs. Adjacency matrix
30

1

2

3

4

3

4

42

2

Efficiency: Time to determine whether
edge from v1 to v2 exists?

O(|V| + |E|) O(1)

0 1 2 3 4

0 F F F F F

1 F F T T F

2 F F F F T

3 F F T F T

4 F F F F F

Tighter: O(|V| + outdegree(v1))

3/21/19

6

Adjacency list vs. Adjacency matrix
31

List Property Matrix
O(|V| + |E|) Space O(|V|2)
O(|V| + |E|) Time to visit all edges O(|V|2)
O(|V| + od(v1)) Time to find edge (v1,v2) O(1)

Adjacency list vs. Adjacency matrix
32

List Property Matrix
O(|V| + |E|) Space O(|V|2)
O(|V| + |E|) Time to visit all edges O(|V|2)
O(|V| + od(v1)) Time to find edge (v1,v2) O(1)

Sparse Dense

Max # edges
= |V|2

Adjacency list vs. Adjacency matrix
33

List Property Matrix
O(|V| + |E|) Space O(|V|2)
O(|V| + |E|) Time to visit all edges O(|V|2)
O(|V| + od(v1)) Time to find edge (v1,v2) O(1)

Sparse: |E| ≪ |V|2 Dense: |E| ≈ |V|2

Max # edges
= |V|2

Adjacency list vs. Adjacency matrix
34

List Property Matrix
O(|V| + |E|) Space O(|V|2)
O(|V| + |E|) Time to visit all edges O(|V|2)
O(|V| + od(v1)) Time to find edge (v1,v2) O(1)
Sparse graphs Better for Dense graphs

Sparse: |E| ≪ |V|2 Dense: |E| ≈ |V|2

Max # edges
= |V|2

