PRIORITY QUEUES & HEAPS

Lecture 14
CS2110 Spring 2019

Interface vs. Implementation
|
Interface: the operations Implementation: the code

of an ADT for a data structure

o What you see on o What you see in

o Fields and method

0 Method names and bodies
specifications

0 Abstract from details:
what to do, not how to
do it

0 Java syntax:
interface

0 Provide the details: how
to do operation

0 Java syntax: class

Could be many implementations
of an interface

e.g. List: Arraylist, LinkedList

Implementations of ADTs

e

List Arraylist, LinkedList
Set HashSet, TreeSet
Map HashMap, TreeMap

Stack Can be done with a LinkedList
Queue Can be done with a LinkedList

Priority Can be done with a heap — later this
Queue lecture!

3/11/19

JavaHyperText Topics
|2
o Interface, implements
o Stack, queue

o Priority queue

o Heaps, heapsort

ADTs (interfaces)

List Ordered collection (aka sequence)

Set Unordered collection with no duplicates

Map Collection of keys and values, like a dictionary
Stack Last-in-first-out (LIFO) collection

Queve First-in-first-out (FIFO) collection

g:;ttey Later this lecture!

Efficiency Tradeoffs

Gl Araylist LinkedList

Backing storage: JliL-) chained nodes

prepend(val) el(ij] O(1)

om ofn)

Which implementation to choose depends
on expected workload for application

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/LinkedList.java

3/11/19

Priority Queue
R

o o Primary operation:
7
- Prlorlfy Queues I Stack: remove newest element

I Queue: remove oldest element

[Priority queue: remove highest priority element

o Priority:
1 Additional information for each element
7 Needs to be Comparable

Priority Queue java.util.PriorityQueue<E>
e —————

class PriorityQueue<E> {
boolean add(E e); //insert e.

Practice for swim test E peek(); //return min elem.
boolean contains(E e);

Learn the Cornell Alma Mater
S boolean remove(E e);

Study for 2110 prelim int size();
Find Eric Andre ticket for sale

Implementations
T

LinkedList
add () put new element at front — O(1) 12
poll () mustsearch the list = O(n)

peek () must search the list = O(n)
LinkedList that is always sorted
add () must search the list = O(n)
poll () highest priority element at front — O(1)
peek () same - O(1)
Balanced BST
add () must search the tree & rebalance — O(log n)
poll () same — Oflogn)
peek () same — Oflog n)

Can we do better?

https://music.library.cornell.edu/cornell-alma-mater

3/11/19

A Heap.. Completeness
D e el EEEEEaEeEee----H
. P tes:
Is a binary tree satisfying 2 properties Every level (except last)
1) Completeness. Every level of the tree (except last) is completely filled.

completely filled, and on last level nodes are as far
Nodes on bottom level are as

left as possible. .
far left as possible.

Do not confuse with heap memory — different use of the word heap.

Completeness A Heap..
[
Not a heap because: Is a binary tree satisfying 2 properties:
1) Completeness. Every level of the tree (except last) is

completely filled, and on last level nodes are as far

* missing a node on level 2

¢ bottom level nodes are not left as possible.

»
as far left as possible L on top

2) Heap-order. o

Max-Heap: every element in tree is <= its parent
Min-Heap: every element in tree is >= its parent

»
i O 10P

missing nodes

Heap-order (max-heap)

]

Every element is <= its parent

Note: Bigger elements
can be deeper in the tree!

3/11/19

A Heap.. Priority queues
D JEm
Is a binary tree satisfying 2 properties y ? y
1) Completeness. Every level of the tree (except last) is Heaps can implement priority queues
compIeTely filled. All holes in last level are all the way y y y
to the right.

2) Heap-order.

Max-Heap: every element in tree is <= its parent o Each her node contains priority of a queue item
Primary operations: o (For values+priorities, see JavaHyperText)

1) add(e): add a new element to the heap

2) poll(): delete the max element and return it

3) peek(): return the max element

Priority queues
N |

: . 22 |Heap Algorithms
Heaps can implement priority queues

o Efficiency we will achieve:
0 add(): O(log n)
o poll(): O(log n)
o peek(): O(1)
o No linear time operations: better than lists

o peek() is constant time: better than balanced trees

Heap: add(e) Heap: add(e)

Time is O(log n)

(o] Le] [e] [o] [re] S

1. Put in the new element in a new node (leftmost empty leaf)

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent

3/11/19

Heap: poll() Heap: poll()

[zo] Ce] o] (o] [re] [re] [zo] Ce] (] o] [re] [5]

1. Save root element in a local variable 1. Save root element in a local variable
2. Assign last value to root, delete last node.

Heap: poll() Heap: peek()
=

=

Time is O(log n)

[ze] [e] Ce] [oo] [] [zo] [e] Ce] o] [

1. Save root element in a local variable 1. Return root value
2. Assign last value to root, delete last node.
3. While less than a child, switch with bigger child (bubble down)

Tree implementation
(s

Heap Implementation public class HeapNode<E> {
private E value;

private HeapNode left;

(max heap) A -
private HeapNode right;

But since tree is complete, even more space-
efficient implementation is possible...

Array implementation
fem

public class Heap<E> {
(* represent tree as array *)
private E[] heap;

Represent tree with array

¢ Store node number i in index i
of array b

¢ Children of b[k] are b[2k +1]
and b[2k +2]

* Parent of b[k] is b[(k-1)/2]

0123;5678% 01 23 4 5 6

78 9
55|38]22[35]12] 19]21[20[6 [4]

children

add() (assuming enough room in array)

class Heap<E> {

/** Add e to the heap */
public void add(E e) {
b[n]= e;
n=n + 1;
bubbleUp(n - 1); // on next slide
}
}

3/11/19

Numbering tree nodes
o

Number node starting at root

row by row, left to right

Same order as
level-order traversal

SL1e]

k=3 3

231 =7 7[29]

2(3)+2 =8

Children of node I are nodes 2k+1 and 2k+2
Parent of node I is node (k-1)/2

Constructor

class Heap<E> {
E[] b; // heap is b[@..n-1]
int n;

/** Create heap with max size */
public Heap(int max) {
b= new E[max];
// n == 0, so heap invariant holds
// (completeness & heap-order)
}
}

add(). heap is in b[0..n-1]
| 30]

class Heap<E> {
/** Bubble element #k up to its position.
* Pre: heap inv holds except maybe for k */
private void bubbleUp(int k) {
int p= (k-1)/2;
// inv: p is parent of k and every element
// except perhaps k is <= its parent
while (k > @ && b[k].compareTo(b[p]) > @) {
swap(b[k], b[p]);
k= p;
p= (k-1)/2;

]

peek()

/** Return largest element
* (return null if list is empty) */
public E poll() {
if (n == @) return null;
return b[0]; // largest value at root.

poll()

/** Bubble root down to its heap position.

Pre: b[@..n-1] is a heap except maybe b[@] */
private void bubbleDown() {

int k= 0;

int c= biggerChild(k); // on next slide

// inv: b[0@..n-1] is a heap except maybe b[k] AND

// b[c] is b[k]’s biggest child

while (¢ < n & b[k] < b[c]) {

swap(b[k], b[c]);
k= c;
c= biggerChild(k);

3/11/19

poll(). heap is in b[0..n-1]
| 38 |

/** Remove and return the largest element
* (return null if list is empty) */
public E poll() {

if (n == @) return null;
E v= b[0]; // largest value at root
n=n - 1; // move last

b[@]= b[n]; // element to root
bubbleDown(); // on next slide

return v;
}
poll()
==
/** Return index of bigger child of node k */
public int biggerChild(int k) {
int c= 2%k + 2; // k’s right child
if (¢ >= n || b[c-1] > b[c])
c= c-1;
return c;
}
Efficiency
==
class PriorityQueue<E> { TIME*
boolean add(E e); //insert e. log
E poll(); //remove&return min elem. log
E peek(); //return min elem. constant
boolean contains(E e); linear
boolean remove(E e); linear
int size(); constant

}

*IF implemented with a heap!

3/11/19

Heapsort
| s

(if time, in JavaHyperText if not)

Goal: sort this array in place
Approach: turn the array into a heap and then poll repeatedly

Heapsort Heapsort
[Em
// Make b[0..n-1] into a max-heap (in place) // Make b[0..n-1] into a max-heap (in place)

// inv: b[0.k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted
for (k= n-1; k> 0; k= k-1) {
b[k]= poll —i.e., take max element out of heap.
}

Heapsort

// Make b[0..n-1] into a max-heap (in place)
// inv: b[0..k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted
for (k= n-1; k > 0; k= k-1) {
b[k]= poll —i.e., take max element out of heap.

of6 .

