
3/11/19

1

PRIORITY QUEUES & HEAPS
Lecture 14
CS2110 Spring 2019

JavaHyperText Topics

¨ Interface, implements
¨ Stack, queue
¨ Priority queue
¨ Heaps, heapsort

2

Interface vs. Implementation

Interface: the operations
of an ADT
¨ What you see on

documentation web
pages

¨ Method names and
specifications

¨ Abstract from details:
what to do, not how to
do it

¨ Java syntax:
interface

Implementation: the code
for a data structure
¨ What you see in source

files
¨ Fields and method

bodies
¨ Provide the details: how

to do operation
¨ Java syntax: class

3

Could be many implementations
of an interface

e.g. List: ArrayList, LinkedList

ADTs (interfaces)
4

ADT Description
List Ordered collection (aka sequence)
Set Unordered collection with no duplicates
Map Collection of keys and values, like a dictionary
Stack Last-in-first-out (LIFO) collection
Queue First-in-first-out (FIFO) collection
Priority
Queue Later this lecture!

Implementations of ADTs
5

Interface Implementation (data structure)
List ArrayList, LinkedList
Set HashSet, TreeSet
Map HashMap, TreeMap
Stack Can be done with a LinkedList
Queue Can be done with a LinkedList
Priority
Queue

Can be done with a heap — later this
lecture!

Efficiency Tradeoffs
6

Class: ArrayList LinkedList

Backing storage: array chained nodes

prepend(val) O(n) O(1)

get(i) O(1) O(n)

Which implementation to choose depends
on expected workload for application

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/LinkedList.java

3/11/19

2

Priority Queues7

Priority Queue

¨ Primary operation:
¤ Stack: remove newest element
¤ Queue: remove oldest element

¤ Priority queue: remove highest priority element

¨ Priority:
¤ Additional information for each element
¤ Needs to be Comparable

8

Priority Queue

Priority Task
Practice for swim test
Learn the Cornell Alma Mater
Study for 2110 prelim
Find Eric Andre ticket for sale

9

java.util.PriorityQueue<E>
10

class PriorityQueue<E> {
boolean add(E e); //insert e.
E poll(); //remove&return min elem.
E peek(); //return min elem.
boolean contains(E e);
boolean remove(E e);
int size();
...

}

Implementations
11

LinkedList
add() put new element at front – O(1)
poll() must search the list – O(n)
peek() must search the list – O(n)

LinkedList that is always sorted
add() must search the list – O(n)
poll() highest priority element at front – O(1)
peek() same – O(1)

Balanced BST
add() must search the tree & rebalance – O(log n)
poll() same – O(log n)
peek() same – O(log n)

Can we do better?

Heaps12

https://music.library.cornell.edu/cornell-alma-mater

3/11/19

3

A Heap..
13

Is a binary tree satisfying 2 properties:

1) Completeness. Every level of the tree (except last) is
completely filled, and on last level nodes are as far
left as possible.

Do not confuse with heap memory – different use of the word heap.

55

2238

35 1912 21

20 46 10 8

Completeness
14

Every level (except last)
completely filled.

Nodes on bottom level are as
far left as possible.

missing nodes

Completeness
15

Not a heap because:

• missing a node on level 2

• bottom level nodes are not
as far left as possible

55

2238

35 1912

20 4 10 8

A Heap..
16

Is a binary tree satisfying 2 properties:

1) Completeness. Every level of the tree (except last) is
completely filled, and on last level nodes are as far
left as possible.

2) Heap-order.

Max-Heap: every element in tree is <= its parent

Min-Heap: every element in tree is >= its parent

“max on top”

“min on top”

Every element is <= its parent

Note: Bigger elements
can be deeper in the tree!

17

Heap-order (max-heap)

55

2238

35 1912 2

20 46 10 18

Piazza Poll #118

3/11/19

4

A Heap..
19

Is a binary tree satisfying 2 properties

1) Completeness. Every level of the tree (except last) is
completely filled. All holes in last level are all the way
to the right.

2) Heap-order.

Max-Heap: every element in tree is <= its parent

Primary operations:

1) add(e): add a new element to the heap

2) poll(): delete the max element and return it

3) peek(): return the max element

Priority queues

!!!

Heaps can implement priority queues
!!!

¨ Each heap node contains priority of a queue item
¨ (For values+priorities, see JavaHyperText)

20

Priority queues

!!!

Heaps can implement priority queues
!!!

¨ Efficiency we will achieve:
¤ add(): O(log n)
¤ poll(): O(log n)

¤ peek(): O(1)

¨ No linear time operations: better than lists
¨ peek() is constant time: better than balanced trees

21

Heap Algorithms22

23

55

2238

35 1912 2

20 46 10 18 50

1. Put in the new element in a new node (leftmost empty leaf)

Heap: add(e)
24

55

2238

35 1912 2

20 46 10 18 5019

5022

50

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent

Time is O(log n)

Heap: add(e)

3/11/19

5

25

55

38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable

55

Heap: poll()
26

55

38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node.

5519

Heap: poll()

19

27

55

38

35 12 2

20 46 10 18

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node.
3. While less than a child, switch with bigger child (bubble down)

Time is O(log n) 5519

19

19

50

22

Heap: poll()
28

Heap: peek()

50

2238

35 1912 2

20 46 10 18

50

1. Return root value

Time is O(1)

(max heap)

Heap Implementation29

Tree implementation
30

public class HeapNode<E> {
private E value;
private HeapNode left;
private HeapNode right;
...

}

But since tree is complete, even more space-
efficient implementation is possible…

3/11/19

6

Array implementation
31

public class Heap<E> {
(* represent tree as array *)
private E[] heap;
...

}

Numbering tree nodes

55

2238

35 1912 21

20 46

Number node starting at root
row by row, left to right

Same order as
level-order traversal

0

1 2

3

9

65

7 8

4

Children of node k are nodes 2k+1 and 2k+2
Parent of node k is node (k-1)/2

k=3

2(3)+1 = 7

2(3)+2 = 8

0 1 2 3 4 5 6 7 8 9

Represent tree with array

• Store node number i in index i
of array b

• Children of b[k] are b[2k +1]
and b[2k +2]

• Parent of b[k] is b[(k-1)/2]

parent

children

55

2238

35 1912 21

20 46

0

1 2

3

9

65

7 8

4

55 38 22 35 12 19 21 20 6 4
0 1 2 3 4 5 6 7 8 9

class Heap<E> {
E[] b; // heap is b[0..n-1]
int n;

/** Create heap with max size */
public Heap(int max) {

b= new E[max];
// n == 0, so heap invariant holds
// (completeness & heap-order)

}
}

Constructor
34

class Heap<E> {

/** Add e to the heap */
public void add(E e) {

b[n]= e;
n= n + 1;
bubbleUp(n - 1); // on next slide

}
}

35

add() (assuming enough room in array)

class Heap<E> {
/** Bubble element #k up to its position.

* Pre: heap inv holds except maybe for k */
private void bubbleUp(int k) {

// inv: p is parent of k and every element
// except perhaps k is <= its parent
while () {

}
}

36

add(). heap is in b[0..n-1]

int p= (k-1)/2;

k > 0 && b[k].compareTo(b[p]) > 0
swap(b[k], b[p]);
k= p;
p= (k-1)/2;

3/11/19

7

/** Return largest element
* (return null if list is empty) */

public E poll() {
if (n == 0) return null;
return b[0]; // largest value at root.

}

37

peek()

/** Remove and return the largest element
* (return null if list is empty) */

public E poll() {
if (n == 0) return null;
E v= b[0]; // largest value at root
n= n – 1; // move last
b[0]= b[n]; // element to root
bubbleDown(); // on next slide
return v;

}

38

poll(). heap is in b[0..n-1]

/** Bubble root down to its heap position.
Pre: b[0..n-1] is a heap except maybe b[0] */

private void bubbleDown() {

// inv: b[0..n-1] is a heap except maybe b[k] AND
// b[c] is b[k]’s biggest child
while () {

}
}

39

int k= 0;
int c= biggerChild(k); // on next slide

c < n && b[k] < b[c]

swap(b[k], b[c]);
k= c;
c= biggerChild(k);

poll()

/** Return index of bigger child of node k */
public int biggerChild(int k) {

int c= 2*k + 2; // k’s right child
if (c >= n || b[c-1] > b[c])

c= c-1;
return c;

}

40

poll()

Piazza Poll #241

Efficiency
42

class PriorityQueue<E> { TIME*
boolean add(E e); //insert e. log
E poll(); //remove&return min elem. log
E peek(); //return min elem. constant
boolean contains(E e); linear
boolean remove(E e); linear
int size(); constant

}

*IF implemented with a heap!

3/11/19

8

(if time, in JavaHyperText if not)

Heapsort43

Heapsort
44

55 4 12 6 14
0 1 2 3 4

Goal: sort this array in place
Approach: turn the array into a heap and then poll repeatedly

Heapsort
45

55 4 12 6 14
0 1 2 3 4

55

124

6 14

0

1 2

3 4

6

4

14
55 4 12614 6

// Make b[0..n-1] into a max-heap (in place)

4 146

6

Heapsort
46

0 1 2 3 4
55

124

6 14

0

1 2

3 4

6

4

14

6

4 12614 4

55
614

6
6

// Make b[0..n-1] into a max-heap (in place)
// inv: b[0..k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted

for (k= n-1; k > 0; k= k-1) {
b[k]= poll – i.e., take max element out of heap.

}

556 614 55

Heapsort
47

0 1 2 3 4

124

6 14

0

1 2

3 4

6

4

14

6

55 4 12614 4 6

614

6
5514 6

14
4

14

12

4
12 4

6

4

12

1246

6

64

4

4

// Make b[0..n-1] into a max-heap (in place)
// inv: b[0..k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted

for (k= n-1; k > 0; k= k-1) {
b[k]= poll – i.e., take max element out of heap.

}

