
TREES, PART 2
Lecture 13
CS2110 – Spring 2019

Finish Lec122

Announcements
3

¨ Prelim conflict quiz was due last night. Too late now
to make changes. We won’t be sending
confirmations about time swaps (5:30 vs 7:30); if
you requested it, you got it.

¨ Room assignments for the prelim (including SDS
accommodations) will be announced by Monday.
Please be patient.

JavaHyperText topics
4

¨ Tree traversals (preorder, inorder, postorder)
¨ Stack machines

…will be added by the end of this weekend

Trees, re-implemented
5

¨ Last time: lots of null comparisons to handle
empty trees

¨ A more OO design:
¤ Interface to represent operations on trees
¤ Classes to represent behavior of empty vs. non-empty

trees

Demo

Iterate through data structure
6

Iterate: process elements of data structure
¨ Sum all elements
¨ Print each element
¨ …

Data Structure Order to iterate

Array Forwards: 2, 1, 3, 0
Backwards: 0, 3, 1, 2

Linked List Forwards: 2, 1, 3, 0

Binary Tree ???2
1 3

2 1 3 0

2 1 3 0

Iterate through data structure
7

5

2 8

0 3 7 9

Discuss: What would a reasonable order be?
Demo

Tree Traversals8

Tree traversals
9

¨ Iterating through tree is aka tree traversal

¨ Well-known recursive tree traversal algorithms:
¤ Preorder
¤ Inorder
¤ Postorder

¨ Another, non-recursive: level order
(later in semester)

Preorder

value

left
subtree

right
subtree

“Pre:” process root before subtrees

1st

2nd 3rd

Inorder

value

left
subtree

right
subtree

“In:” process root in-between subtrees

1st

2nd

3rd

Postorder

value

left
subtree

right
subtree

“Post:” process root after subtrees

1st 2nd

3rd

Poll
13

5

2 8

0 3 7 9

Which traversal would print out this BST in ascending order?

Example: Syntax Trees14

Syntax Trees
15

¨ Trees can represent (Java) expressions
¨ Expression: 2 * 1 – (1 + 0)
¨ Tree:

–
*

2 1
+

1 0

Traversals of expression tree
16

- * 2 +Preorder traversal
1. Visit the root
2. Visit the left subtree
3. Visit the right subtree

1 1 0

–
*

2 1
+

1 0

Traversals of expression tree
17

- * 2 +Preorder traversal

Postorder traversal
1. Visit the left subtree
2. Visit the right subtree
3. Visit the root

1 1 0

–
*

2 1
+

1 0

2 1 * 01 + -

Traversals of expression tree
18

- * 2 +Preorder traversal

Postorder traversal

Inorder traversal
1. Visit the left subtree
2. Visit the root
3. Visit the right subtree

1 1 0

–
*

2 1
+

1 0

2 1 * 01 + -

2 * 1 1- + 0

Traversals of expression tree
19

- * 2 +Preorder traversal

Postorder traversal

Inorder traversal

1 1 0

–
*

2 1
+

1 0

2 1 * 01 + -

2 * 1 1- + 0

Original expression,
except for parens

Prefix notation
20

¨ Function calls in most programming languages use
prefix notation: e.g., add(37, 5).

¨ Aka Polish notation (PN) in honor of inventor, Polish
logician Jan Łukasiewicz

¨ Some languages (Lisp, Scheme, Racket) use prefix
notation for everything to make the syntax uniform.

(- (* 2 1) (+ 1 0))

(define (fib n)
(if (<= n 2)

1
(+ (fib (- n 1) (fib (- n 2)))))

Postfix notation
21

¨ Some languages (Forth, PostScript, HP calculators)
use postfix notation

¨ Aka reverse Polish notation (RPN)

2 1 mul 1 0 add sub

/fib { dup
3 lt

{ pop 1 }
{ dup 1 sub fib exch 2 sub fib add }

ifelse
} def

Postfix notation
22

In about 1974, Gries paid
$300 for an HP calculator,
which had some memory
and used postfix notation.
Still works.

In about 1993, Clarkson
paid $150 for an HP
calculator with more
memory, buttons, and
screen.

Mac Calculator also does RPN Demo

Syntax trees: in code
23

public class Add implements Expr {
private Expr left, right;
public int eval() { return left.eval() + right.eval(); }
public String inorder() {
return "(" + left.infix() + "+" + right.infix() + ")";

}
}

public interface Expr {
int eval();
String inorder();

}
public class Int implements Expr {
private int v;
public int eval() { return v; }
public String inorder() { return " " + v + " "; }

}

(see website for full code)

Java syntax
24

¨ Java compiler:
¤ translates your text file (list of characters) into a syntax

tree
¤ decides whether program is legal

¨ Grammar for legal programs:
https://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

¤ You could use it to generate every possible Java
program. (That would take forever.)

https://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

Back to Trees25

Recover tree from traversal
26

Suppose inorder is B C A E D.
Can we recover the tree uniquely?
Discuss.

Recover tree from traversal
27

Suppose inorder is B C A E D.
Can we recover the tree uniquely? No!

C
B E

A D

A
B

C
E

D

Recover tree from traversals
28

Suppose inorder is B C A E D
preorder is A B C D E

Can we determine the tree uniquely?

Recover tree from traversals
29

Suppose inorder is B C A E D
preorder is A B C D E

Can we determine the tree uniquely? Yes!

¨ What is root? Preorder tells us: A
¨ What comes before/after root A? Inorder tells us:

¤ Before: B C
¤ After: E D

¨ Now recurse! Figure out left/right subtrees using
same technique.

Recover tree from traversals
30

Suppose inorder is B C A E D
preorder is A B C D E

Root is A; left subtree contains B C; right contains E D

Left:
Inorder is B C
Preorder is B C
• What is root? Preorder: B
• What is before/after B? Inorder:

• Before: nothing
• After: C

Right:
Inorder is E D
Preorder is D E
• What is root? Preorder: D
• What is before/after D? Inorder:

• Before: E
• After: nothing

Recover tree from traversals
31

Suppose inorder is B C A E D
preorder is A B C D E

Tree is
A

B

C
D

E

