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Announcements

Submit P1 Conflict quiz on CMS by end of day 
Wednesday.  We won’t be sending confirmations; no 
news is good news.  Extra time people will eventually 
get an email from Lacy.  Please be patient.
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Today’s Topics in JavaHyperText

¨ Search for “trees”
¨ Read PDFs for points 0 through 5:  intro to trees, 

examples of trees, binary trees, binary search trees, 
balanced trees
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Data Structures

¨ Data structure
¤ Organization or format for storing or managing data
¤ Concrete realization of an abstract data type

¨ Operations
¤ Always a tradeoff:  some operations more efficient, 

some less, for any data structure
¤ Choose efficient data structure for operations of 

concern

4



Example Data Structures

Data Structure add(val v) get(int i)

Array

Linked List
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2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

add(v): append v
get(i): return element at position i
contains(v): return true if contains v

contains(val v)

!(#)

!(#)



Tree
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Singly linked list:

2 1 1 0Node 
object

pointerint value

Today: trees!

0

4 1 1 0

2

1
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Trees
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In CS, we draw trees “upside down”



Tree Overview
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Tree: data structure with 
nodes, similar to linked list
¤ Each node may have zero or 

more successors (children)
¤ Each node has exactly one 
predecessor (parent) except 
the root, which has none

¤ All nodes are reachable 
from root

A tree Not a tree

Not a tree A tree
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4 2

7 8 9

5

4 2

7 8 9
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7

5

4

7 8

A tree or not a tree?



Tree Terminology (1)
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M

G W

PJD

NHB S

the root of the tree
(no parents)

the leaves of the tree
(no children)

child of M child of M



Tree Terminology (2)
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M

G W

PJD

NHB S

descendants 
of W

ancestors of B



Tree Terminology (3)
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subtree of M
M

G W

PJD

NHB S



Tree Terminology (4)
12

A node’s depth is the length of the path to the root.
A tree’s (or subtree’s) height is the length of the longest 
path from the root to a leaf.

depth 3

M

G W

PJD

NHB S

depth 1

height 0

height 2



Tree Terminology (5)
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Multiple trees: a forest

G W

PJD

NHB S



General vs. Binary Trees
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General tree: every node 
can have an arbitrary 
number of children

Binary tree: at most two 
children, called left and 
right

…often “tree” means 
binary tree

General tree

Binary tree

5

4 2

7 8 9

5

4 2

7 9

Demo



Binary trees were in A1!

You have seen a binary tree in A1.
A PhD object has one or two advisors. 
(Note: the advisors are the “children”.)
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David Gries

Friedrich Bauer 

Georg AumannFritz Bopp 

Fritz Sauter Erwin Fues Heinrich Tietze Constantin Carathodory



Special kinds of binary trees
16

Max # of nodes at depth d: 2d

If height of tree is h:
min # of nodes: h + 1
max #of nodes:  (Perfect tree)
20 + … + 2h =  2h+1 – 1

depth
0

1

2
Height 2, 
minimum number of nodes

Height 2, 
maximum number of nodes

2

9 0

8 3 5

2

0

5

Complete binary tree
Every level, except last, 
is completely filled, 
nodes on bottom level 
as far left as possible. 
No holes.



Trees are recursive

a binary tree



Trees are recursive

value

left
subtree

right
subtree



Trees are recursive

value



Trees are recursive

Binary 
Tree

Left subtree,
which is also a 
binary tree

Right subtree
(also a binary tree)

2

9 0

8 3 5 7



Trees are recursive
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A binary tree is either null

or an object consisting of a value, a left binary tree, and a right 
binary tree.
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Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

A Recipe for Recursive Functions



A Recipe for Recursive Functions on Binary Trees
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Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

an empty tree (null), or possibly a leaf

each subtree

Demo



Binary Tree

Comparing Searches

Data Structure add(val v) get(int i)

Array

Linked List
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2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

contains(val v)

!(#)

!(#)
2

1 3
!(#)

Node could be anywhere in tree

Binary search on arrays:  O(log n)
Requires invariant: array sorted

…analogue for trees?



>5<5

Binary Search Tree (BST)
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A binary search tree is a binary tree with a class invariant:
• All nodes in the left subtree have values that are less than the 

value in that node, and

• All values in the right subtree are greater.

(assume no duplicates)

5

2 8

0 3 7 9

Demo



Binary Search Tree (BST)

Contains:
¨ Binary tree: two recursive calls:  O(n)
¨ BST: one recursive call:  O(height)
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5

2 8

0 3 7 9



BST Insert
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To insert a value:
¤Search for value
¤ If not found, put in tree where search ends

Example: Insert month names in chronological order as 
Strings, (Jan, Feb…). BST orders Strings alphabetically (Feb 
comes before Jan, etc.)



BST Insert
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insert: January



BST Insert
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January

insert: February



BST Insert
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January

February

insert: March



BST Insert
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January

February March

insert: April…



BST Insert
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January

February March

April MayJune

JulyAugust September

October

November

December



Binary Tree

BST

Comparing Data Structures

Data Structure add(val x) get(int i)

Array

Linked List
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2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

contains(val x)

!(#)

!(#)
1

2 3
!(#)

2
1 3

!(ℎ'()ℎ*) !(ℎ'()ℎ*)

How big could height be?



Worst case height
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April

Insert in alphabetical order…



Worst case height
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April

August

Insert in alphabetical order…



Worst case height
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April

August

December

February

January

Insert in alphabetical order…

Tree degenerates to list!



Need Balance

¨ Takeaway: BST search is O(n) time
¤ Recall, big O notation is for worst case running time 
¤ Worst case for BST is data inserted in sorted order

¨ Balanced binary tree: subtrees of any node are 
about the same height
¤ In balanced BST, search is O(log n)
¤ Deletion:  tricky!  Have to maintain balance
¤ [Optional] See JavaHyperText “Extensions to BSTs”
¤ Also see CS 3110
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