
TREES
Lecture 12
CS2110 – Spring 2019

Announcements

Submit P1 Conflict quiz on CMS by end of day
Wednesday. We won’t be sending confirmations; no
news is good news. Extra time people will eventually
get an email from Lacy. Please be patient.

2

Today’s Topics in JavaHyperText

¨ Search for “trees”
¨ Read PDFs for points 0 through 5: intro to trees,

examples of trees, binary trees, binary search trees,
balanced trees

3

Data Structures

¨ Data structure
¤ Organization or format for storing or managing data
¤ Concrete realization of an abstract data type

¨ Operations
¤ Always a tradeoff: some operations more efficient,

some less, for any data structure
¤ Choose efficient data structure for operations of

concern

4

Example Data Structures

Data Structure add(val v) get(int i)

Array

Linked List

5

2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

add(v): append v
get(i): return element at position i
contains(v): return true if contains v

contains(val v)

!(#)

!(#)

Tree
6

Singly linked list:

2 1 1 0Node
object

pointerint value

Today: trees!

0

4 1 1 0

2

1

1

Trees
7

In CS, we draw trees “upside down”

Tree Overview
8

Tree: data structure with
nodes, similar to linked list
¤ Each node may have zero or

more successors (children)
¤ Each node has exactly one
predecessor (parent) except
the root, which has none

¤ All nodes are reachable
from root

A tree Not a tree

Not a tree A tree

5

4 2

7 8 9

5

4 2

7 8 9

5

6

7

5

4

7 8

A tree or not a tree?

Tree Terminology (1)
9

M

G W

PJD

NHB S

the root of the tree
(no parents)

the leaves of the tree
(no children)

child of M child of M

Tree Terminology (2)
10

M

G W

PJD

NHB S

descendants
of W

ancestors of B

Tree Terminology (3)
11

subtree of M
M

G W

PJD

NHB S

Tree Terminology (4)
12

A node’s depth is the length of the path to the root.
A tree’s (or subtree’s) height is the length of the longest
path from the root to a leaf.

depth 3

M

G W

PJD

NHB S

depth 1

height 0

height 2

Tree Terminology (5)
13

Multiple trees: a forest

G W

PJD

NHB S

General vs. Binary Trees
14

General tree: every node
can have an arbitrary
number of children

Binary tree: at most two
children, called left and
right

…often “tree” means
binary tree

General tree

Binary tree

5

4 2

7 8 9

5

4 2

7 9

Demo

Binary trees were in A1!

You have seen a binary tree in A1.
A PhD object has one or two advisors.
(Note: the advisors are the “children”.)

15

David Gries

Friedrich Bauer

Georg AumannFritz Bopp

Fritz Sauter Erwin Fues Heinrich Tietze Constantin Carathodory

Special kinds of binary trees
16

Max # of nodes at depth d: 2d

If height of tree is h:
min # of nodes: h + 1
max #of nodes: (Perfect tree)
20 + … + 2h = 2h+1 – 1

depth
0

1

2
Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

2

9 0

8 3 5

2

0

5

Complete binary tree
Every level, except last,
is completely filled,
nodes on bottom level
as far left as possible.
No holes.

Trees are recursive

a binary tree

Trees are recursive

value

left
subtree

right
subtree

Trees are recursive

value

Trees are recursive

Binary
Tree

Left subtree,
which is also a
binary tree

Right subtree
(also a binary tree)

2

9 0

8 3 5 7

Trees are recursive
21

A binary tree is either null

or an object consisting of a value, a left binary tree, and a right
binary tree.

22

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

A Recipe for Recursive Functions

A Recipe for Recursive Functions on Binary Trees
23

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

an empty tree (null), or possibly a leaf

each subtree

Demo

Binary Tree

Comparing Searches

Data Structure add(val v) get(int i)

Array

Linked List

24

2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

contains(val v)

!(#)

!(#)
2

1 3
!(#)

Node could be anywhere in tree

Binary search on arrays: O(log n)
Requires invariant: array sorted

…analogue for trees?

>5<5

Binary Search Tree (BST)
25

A binary search tree is a binary tree with a class invariant:
• All nodes in the left subtree have values that are less than the

value in that node, and

• All values in the right subtree are greater.

(assume no duplicates)

5

2 8

0 3 7 9

Demo

Binary Search Tree (BST)

Contains:
¨ Binary tree: two recursive calls: O(n)
¨ BST: one recursive call: O(height)

26

5

2 8

0 3 7 9

BST Insert
27

To insert a value:
¤Search for value
¤ If not found, put in tree where search ends

Example: Insert month names in chronological order as
Strings, (Jan, Feb…). BST orders Strings alphabetically (Feb
comes before Jan, etc.)

BST Insert
28

insert: January

BST Insert
29

January

insert: February

BST Insert
30

January

February

insert: March

BST Insert
31

January

February March

insert: April…

BST Insert
32

January

February March

April MayJune

JulyAugust September

October

November

December

Binary Tree

BST

Comparing Data Structures

Data Structure add(val x) get(int i)

Array

Linked List

33

2 1 3 0

2 1 3 0

!(#) !(1)
!(#)!(1)

contains(val x)

!(#)

!(#)
1

2 3
!(#)

2
1 3

!(ℎ'()ℎ*) !(ℎ'()ℎ*)

How big could height be?

Worst case height
34

April

Insert in alphabetical order…

Worst case height
35

April

August

Insert in alphabetical order…

Worst case height
36

April

August

December

February

January

Insert in alphabetical order…

Tree degenerates to list!

Need Balance

¨ Takeaway: BST search is O(n) time
¤ Recall, big O notation is for worst case running time
¤ Worst case for BST is data inserted in sorted order

¨ Balanced binary tree: subtrees of any node are
about the same height
¤ In balanced BST, search is O(log n)
¤ Deletion: tricky! Have to maintain balance
¤ [Optional] See JavaHyperText “Extensions to BSTs”
¤ Also see CS 3110

37

