achieve it and education to appreciate it. And to make
matters worse: complexity sells better.”

- Eds

ASYMPTOTIC COMPLEXITY

Lecture 10
CS2110 — Spring 2019

Help in providing code coverage

==
White-box testing: make sure each part of program is “exercised”
in at least one test case. Called code coverage.

Eclipse has a tool for showing you how good your code coverage
is! Use it on A3 (and any programs you write)

JavaHyperText entry:
code coverage

We demo it.

Basic Step: one “constant time” operation

==
Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time is
bounded above by some number
Basic step:
Input/output of a number

Access value of primitive-type variable, array element, or
object field

assign to variable, array element, or object field ***
do one arithmetic or logical operation

method call (not counting arg evaluation and execution of
method body)

Announcements

==

o Next Mon-Tues: Spring Break

o No recitation next week

o Regrade requests will be processed this weekend

o Prelim is on Tuesday, 12 March. Prelim
Review for prelim Sunday, 10 March, 1-3PM
Next Thursday, we will tell you

‘What time you will be assigned to take it

What to do if you can’t take it then but can take the other one
What to do if you can’t take it that evening.

What to do if authorized for more time or quiet space

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the
same thing; which is better?

What do we mean by better? FIRST, Aim for simplicity,

2 .
Faster? ease of understanding,

Less space? correctness.

Simpler?
Easier to code?
Easier to maintain2

SECOND, Worry about

efficiency only when it is
Required for homework? needed.

How do we measure speed of an algorithm?

Counting Steps

All basic steps take time 1.~ *
There are n loop iterations. 2o
Therefore, takes time 1%
proportional to n. 50

| el
// Store sum of 1..n in sum Statement: # times done
sum=0; sum= 0; 1
//inv: sum = sum of 1..(k-1) k=1 1
) k<=n n+l

for (intk=1; k <=n; k=k+1){ [} =141 n

sum= sum + k; sum= sum + k; n
} Total steps: 3n+3

%> Linear algorithm in n

2/24/19

Not all operations are basic steps

String Catenation

ORI

s=s+“c”; is NOT constant time.
It takes time proportional to 1 + length of s

// Store n copies of ‘c’in s Statement: # times done
=" =" h
- : : o k=1, 1
//inv: s contains k-1 copies of ‘c >
. k<=n n+l
for (intk= Lk <=m k=k+D{ |1 141 n
s= s+'c s=s+'ch n
} Total steps: 3n+3
Catenation is not a basic step.
For each k, catenation creates
and fills k array elements.

char

char[]@02
0

o]

String@00 y String@90
., b

%char[]

char[]@018

of+d]

char(]

Basic steps executed in s= s + ‘c’;
|

s= s+'c’; // Suppose length of s is k

1. Create new String object, say C basic steps.

2. Copy k chars from object s to the new object: k basic steps
3. Place char ‘c’ into the new object: 1 basic step.

4. Store pointer to new object into s: 1 basic step.

Total of (C+2) + k basic steps.

In the algorithm, s=s+ ‘c’; is executed n times:

s= s+’ withlengthof s=0
s= s+’ withlengthofs=1
s= s+’ withlength of s=n-1

Total of n*(C+2) + (0 + 1 +2 + ... n-1) basic steps

Basic steps executed in s= s + ‘c’;
| i

s= s+'c’; // Suppose length of s is k

In the algorithm, s=s+ ‘c’; is executed as follows:

s= s+‘c’; withlengthofs=0
s= s+‘c’; withlengthofs=1
s= s+‘c’; with length of s =n-1

Total of n*(C+2) + (0 + 1 +2 + ... n-1) basic steps

[Total of n*(C+2) + n%/2 — /2 basic steps |

| Total of n*(C+2) + n%/2 - n/2 basic steps. Quadratic in n. |

1[5 1[x
2]

Basic steps executed in s= s + ‘c’;
| 0]

s= s+'c’; // Suppose length of s is k

In the algorithm, s=s+ ‘c’; is executed as follows:

s= s+ ‘c’; withlength of s=0
s= s+ ‘c’; withlengthof s=1
s s+°C; with length of s =n-1

Total of n*(C+2) + (0 + 1 +2 + ... n-1) basic steps

0+1+2+...n-1=n(n-1)/2. Gauss figured this out in the 1700’s
=n?2-1n/2.

Not all operations are basic steps
| 12 |
// Store n copies of ‘¢’ in s Statement: #times # steps
=" g="" 1 1
//inv: s contains k-1 copies of ‘c =1 ! 1
. o k<=n n+1 1
for (int k= 1; k <=n; k=k+1){ k= k+H; n 1
s= s+'c; s=s+'c’; see to left
} Total steps:
Total steps: : A .
n+3+ ot Quadratic algorithm in n
nH(CH2) + 122 12 0
150
fors=s+‘c’; 100
50
¢ 20 40 60 80 100

2/24/19

http://mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

Linear versus quadractic

// Store sum of 1..n in sum // Store n copies of ‘¢’ in s

sum= 0; s=7;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <=n; k=k+1) for (intk=1; k =n; k=k+1)
sum= sum +n s= s+ ¢’

Linear algorithm Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number
of basic steps is not important. What’s important is that
One is linear in n —takes time proportional to n

One is quadratic in n —takes time proportional to n

//inv: s contains k-1 copies of ‘c’

What do we want from a
definition of “runtime complexity”2

| 15|
1. Distinguish among cases
for large n, not small n
Number of g
operations 2. Distinguish among
executed important cases, like

* - .
n™n ops * n*n basic operations

* n basic operations
¢ log n basic operations
24n0ps « 5 basic operations

// Tops 3. Don’t distinguish among
trivially different cases.
1 2 3 ... sizenof problem *5 or 50 operations
*n, n+2, or 4n operations

Prove that (2n2 + n) is O(n?)

Formal definition: f(n) is O(g(n)) if there exist constants ¢ > 0
and N > 0 such that foralln > N. f(n) <c-g(n)

Example: Prove that (2n2 + n) is O(n?)

Methodology:

Start with f(n) and slowly transform into ¢ * g(n):
| Use = and <= and < steps
O At appropriate point, can choose N to help calculation

O At appropriate point, can choose c to help calculation

Formal definition: f(n) is O(g(n)) if there exist constants ¢ > 0
IQnd N > 0 such that foralln >N, f(n) <c-g(n)

—

Get out far enough
(for n = N)

) f(n) is at most c-g(n)

cg(n

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower

[
>

1
1
1
1

N

Looking at execution speed
14|
Number of 2n+2, nt2, n are all linear in n,
operations proportional to n
execufed 2n+2 ops
*;
n*n ops n+2ops
nops
— Constant time
0123 ... size n of the array
"Big O" Notation
| 6]

Prove that (2n? + n) is O(n?)

Formal definition: f(n) is O(g(n)) if there exist constants ¢ > 0
and N >0 such that foralln >N. f(n) <c-g(n)

Example: Prove that (2n2 + n) is O(n?)

f(n) Transform f(n) into c-g(n):

= <definition of f(n)> Use =, <=, < steps

2n2 +n «Choose N to help calc.
<= <fornz1, n<n®> «Choose c to help calc
2n2 +n?
= <arith>
3*n? Choose
= <definition of g(n) = n2> N=1landc=3
3*g(n)

2/24/19

Prove that 100 n + logn is O(n)

Formal definition: f(n) is O(g(n)) if there exist constants ¢ > 0
and N > 0 such that foralln > N. f(n) <c-g(n)

f(n)
= <put in what f(n) is>
100n + logn
<= <We know logn <nforn>1>
100n+n
_ 00<arith> Choose
N=1andc=10I
101 n
= <g(n) = n>
101 g(n)

Do NOT say or write f(n) = O(g(n))

and N >0 such that foralln >N, f(n) <c-g(n)
f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don’t read such things.

Eomlal definition: f(n) is O(g(n)) if there exist constants ¢ > 0

Here’s an example to show what happens when we use = this way.
We know that n+2 is O(n) and n+3 is O(n). Suppose we use =

nt+2 =0O(n)

nt+3 =0(n)
But then, by transitivity of equality, we have n+2 =n+3.
We have proved something that is false. Not good.

Commonly Seen Time Bounds

o(1) constant excellent
O(log n) logarithmic excellent
O(n) linear good
O(nlog n) nlogn pretty good
O(n2) quadratic maybe OK
O(n3) cubic maybe OK
O(2) exponential too slow

2/24/19

O(...) Examples
=
Let f(n) = 3n2 + 6n—7
f(n) is O(n2) Only the leading term (the
f(n) is O(n3) term that grows most
f(n) is O(n*) rapidly) matters
p(n)=4nlogn+ 34n-89 L L
p(n) is O(n log n) If it's O(n?), it's also O(n3)
p(n) is O(?) etc! However, we always
h(n) = 20-2" + 40n use the smallest one
h(n) is O(2")
a(n) =34
a(n) is O(1)
Problem-size examples
==
o Suppose a computer can execute 1000 operations
per second; how large a problem can we solve?
operations | 1 second 1 minute 1 hour
n 1000 60,000 3,600,000
nlogn 140 4893 200,000
n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2 9 15 21
Search for v in b[0..]
==

Q: visinarray b

Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

o} 5o >[5

B && P

!B&& P implies R

Methodology:
1. Define pre and post
conditions.

2. Draw the invariant as a
combination of pre and
post.

3. Develop loop using 4
loopy questions.

Practice doing this!

Search for v in b[0..]

[[Q: Vs in array b

Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

0 b.length

0 i

b.length

0 i

inv: b Zo] vinber |

b.length

Methodology:

1.

2.

Define pre and post
conditions.

Draw the invariant as a
combination of pre and
post.

Develop loop using 4
loopy questions.

Practice doing this!

Search for v in b[0..]

Q: v is in array b

Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

0 b.length
0 i
0 i

iv: o[9] vimer |

Linear algorithm: O(b.length)

b.length

b.length

i=0;
while (b[i] !=v) {
i=it+1;

}

Each iteration takes
constant time.
Worst case: b.length
iterations

Binary search for v in sorted b[0..]

// b[0..i] <= v <Db[it+l..]

ﬁ// b is sorted. Store ini a value to truthify R:

0 b.length

0 i
0 i k

v b2 7] 5

b.length

b.length

i=-1;

k="b.length;

while (i+1<k) {
int e=(i+k)/2;

//-1<i<e<k<b.length

if (b[e] <=v) i=¢;
else k=¢;

2/24/19

The Four Loopy Questions
| 2|
o Does it start right?
o Does it continue right?
S O
Bake 0 Does it end right?
!B&& P implies R
o Will it get to the end?
Binary search for v in sorted b[0..]
==/ b is sorted. Store in'i a value to truthify R:
// b[0..i] <=v <b[it+]..]
0 b.length
pre:b T e
1. Define pre and post
0 i b.length conditions.
ost: bm 2. Draw the invariant as a
P -- combination of pre and
0 i k b.ength post.
inv: b 3. Develop loop using 4
loopy questions.
b is sorted. We know that. To avoid
clutter, don’t write in it invariant Practice doing this!

Binary search for v in sorted b[0..]

// b[0..i] <= v <b[it+l..]

m1// b is sorted. Store ini a value to truthify R:

b.length

Logarithmic: O(log(b.length))

i=-1;

k= b.length;

while (i+1<k) {
int e=(i+k)/2;
/I -1 <e <k <b.length
if (b[e] <=v) i=¢;
else k=¢;

}

Each iteration takes constant time.

Worst case:
log(b.length) iterations

Binary search for v in sorted b[0..]

// b is sorted. Store ini a value to truthify R:
// b[0..i] <= v <Db[i+]..]

i=-1;

k= Db.length;

while (i+1<k) {

int e=(i+k)/2;

// -1 <e <k <b.length
if (b[e] <=v) i=¢;
else k=e¢;

This algorithm is better than binary

searches that stop when v is found.

1. Gives good info when v not in b.

2. Works when b is empty.

3. Finds first occurrence of v, not
arbitrary one.

4. Correctness, including making)

progress, easily seen using invariant
Each iteration takes constant time.

Worst case:

Logarithmic: A
B c: Oflog(b.length)) log(b.length) iterations

Dutch National Flag Algorithm

[

Dutch national flag. Swap b[0..n-1] to put the reds first, then
the whites, then the blues. That is, given precondition Q, swap
values of b[0.n-1] to truthify postcondition R:

0 n
Qb | 5] Supp9se we use
invariant P1.
0 n
R:b I reds I whites I blues I ‘What does the
2
0 R repetend do?
PL:bfreds | whites | blues | 2 |
5 2 swaps to get a
n

red in place

P2ib|redsl whites I ? I blues I

Dutch National Flag Algorithm: invariant P1

[

0 n
Q: b ? | h=0k=h;p=k;

0 n Wwhile(p!=n){
R:b|reds | whites | blues | if (b[p] blue) p= p+1;

else if (b[p] white) {

0 h _k __p n swap blp]. blK;

P1: b reds| whites| blues | ? | p=pH; k= ks

else { // b[p] red
swap b[p], blh];
swap b[p], blk];
p=p+l; h=ht1l; k=k+1;

2/24/19

Dutch National Flag Algorithm
fem

Dutch National Flag Algorithm

|" I Dutch national flag. Swap b[0..n-1] to put the reds first, then
the whites, then the blues. That is, given precondition Q, swap
values of b[0.n-1] to truthify postcondition R:

Suppose we use
- . invariant P2,
Q:b I 2 I
0 n ‘What does the
9
R:b I reds l whites I blues I repetend do?
0 At most one swap
n . .
er 1teration
Pl: bI reds I whites I blues I 2 I p
0 n Compare algorithms
P2: bl reds I whites I ? I blues I without writing code!

Dutch National Flag Algorithm: invariant P2
==
0 n
Q:bf ? | bh=0;k=h;p=n;
0 o while (k1=p) {
R:blreds | whites | blues | if (b[k] white) k= k+1;
0 h k D n else if (b[k] blue) {
P2: b reds| whites| ? | blues | p=p-1;
swap b[k], b[p];
else { // bk] is red
swap b[k], blh];
h=h+1; k=k+1;
! }
36

Asymptotically, which algorithm is faster?
[e

0 h k p nO0 h k D n
| reds| whites| blues| ? | [reds| whites| ? | blues |

h=0; k=h; p=k;
while (p!=n) {
if (b[p] blue) p=ptl;
else if (b[p] white) {
swap b[p], b[k];
p=ptl; k=k+1;

h=0; k=h; p=n;
while (k!=p) {
if (b[k] white) k= k+1;
else if (b[k] blue) {
p=p-1;
, swap b[k], b[p];
else { // b[p] red
swap b[p], b[h];

swap b[p], b[k];
p=ptl; h=h+1; k=k+1;

}

else { // b[k] is red
swap b[K], b[h];
h=h+1; k=k+1;

Asymptotically, which algorithm is faster?
[

0 h k D nO0 h k D n
| reds| whites| blues| ? | [reds| whites| ? | blues |

might use 2 swaps per iteration

if (b[p] blue) p=ptl;
else if (b[p] white) {
swap b[p], b[k];

uses at most 1 swap per iteration

if (b[k] white) k= k+1;
else if (b[k] blue) {

swap b[k], b[h];

swap bipl, >
swap b[p], b[k]; h=ht1; k=k+1;

p=ptl; h=ht+1; k=k+1;

2/24/19

