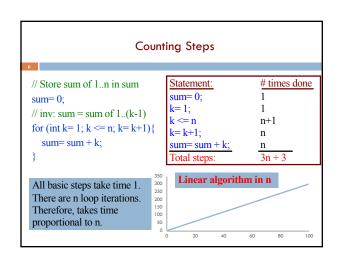
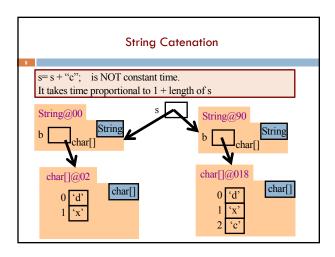


Help in providing code coverage White-box testing: make sure each part of program is "exercised" in at least one test case. Called code coverage. Eclipse has a tool for showing you how good your code coverage is! Use it on A3 (and any programs you write) JavaHyperText entry: code coverage

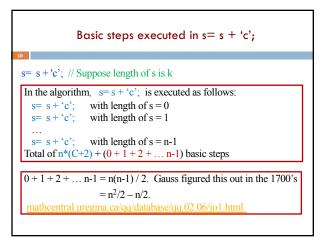
We demo it.

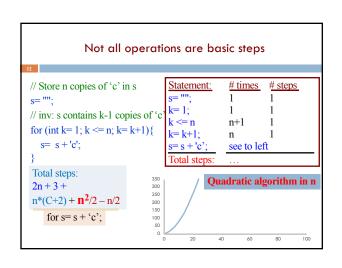


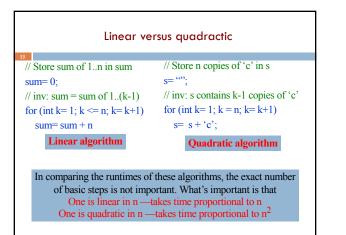
Basic Step: one "constant time" operation

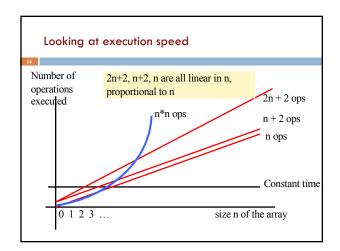

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

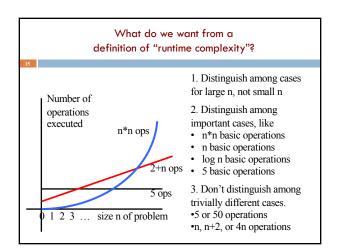
Basic step:

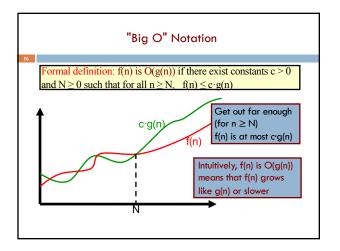

- □ Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field ***
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)

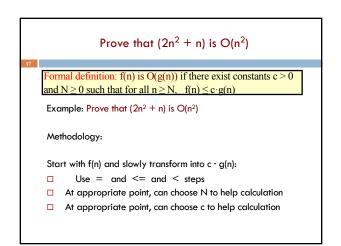

7		
<pre>// Store n copies of 'c' in s s= ""; // inv: s contains k-1 copies of 'c' for (int k= 1; k <= n; k= k+1){ s= s + 'c'; }</pre>	$\frac{\text{Statement:}}{s= "";} \\ k=1; \\ k <= n \\ k=k+1; \\ \frac{s=s+'c';}{\text{Total steps:}}$	$\frac{\# \text{ times done}}{1}$ $\frac{1}{n+1}$ $\frac{n}{3n+3}$
Catenation is not a basic step. For each k, catenation creates and fills k array elements.		

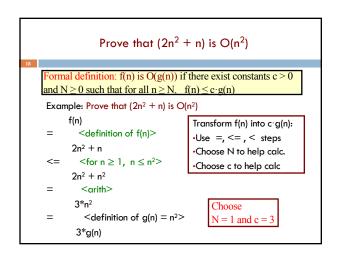


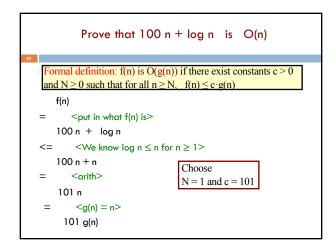

Basic steps executed in s= s + 'c';
9
s = s + c'; // Suppose length of s is k
 Create new String object, say C basic steps. Copy k chars from object s to the new object: k basic steps Place char 'c' into the new object: 1 basic step. Store pointer to new object into s: 1 basic step. Total of (C+2) + k basic steps.
In the algorithm, $s=s+c^2$; is executed n times: $s=s+c^2$; with length of $s=0$ $s=s+c^2$; with length of $s=1$
s = s + c'; with length of s = n-1 Total of $n^*(C+2) + (0+1+2+n-1)$ basic steps

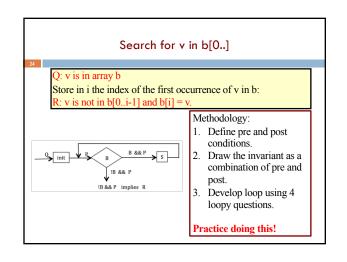


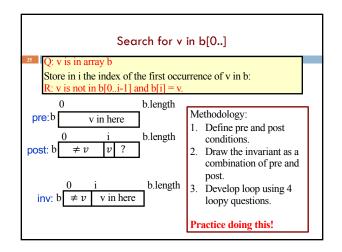

ppose length of s is k
n, $s=s+c'$; is executed as follows:
with length of $s = 0$
with length of $s = 1$
with length of $s = n-1$
(0 + 1 + 2 + n - 1) basic steps
$n^2 + n^2/2 - n/2$ basic steps

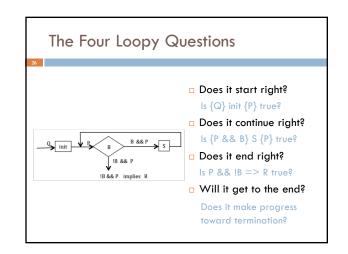


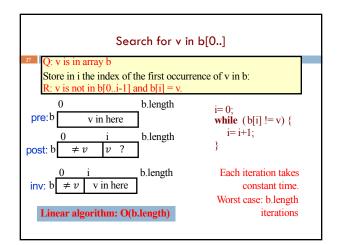


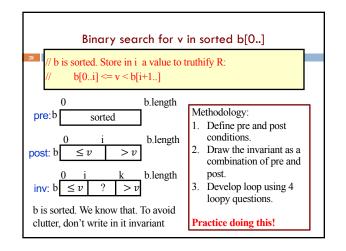



O()	Examples
20 Let $f(n) = 3n^2 + 6n - 7$ $f(n) is O(n^2)$ $f(n) is O(n^3)$ $f(n) is O(n^4)$ 	Only the <i>leading</i> term (the term that grows most rapidly) matters
$p(n) = 4 n \log n + 34 n - 89$ $p(n) is O(n \log n)$ $p(n) is O(n^2)$ $h(n) = 20 \cdot 2^n + 40n$ $h(n) is O(2^n)$ a(n) = 34 a(n) is O(1)	If it's O(n ²), it's also O(n ³) etc! However, we always use the smallest one


Do NOT say or write $f(n) = O(g(n))$
Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$
f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don't read such things.
Here's an example to show what happens when we use = this way.
We know that $n+2$ is $O(n)$ and $n+3$ is $O(n)$. Suppose we use =
n+2 = O(n) $n+3 = O(n)$ But then, by transitivity of equality, we have $n+2 = n+3$. We have proved something that is false. Not good.


Suppose a computer can execute 1000 operations per second; how large a problem can we solve?


operations	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n²	31	244	1897
3n ²	18	144	1096
n ³	10	39	153
2 ⁿ	9	15	21


O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)	n log n	pretty good
O(n ²)	quadratic	maybe OK
O(n ³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

