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ASYMPTOTIC COMPLEXITY
Lecture 10

CS2110 – Spring 2019

“Simplicity is a great virtue but it requires hard work to 
achieve it and education to appreciate it. And to make 
matters worse: complexity sells better.”

- Edsger Dijkstra

Announcements
2

¨ Next Mon-Tues: Spring Break

¨ No recitation next week

¨ Regrade requests will be processed this weekend

¨ Prelim is on Tuesday, 12 March. Prelim 
Review for prelim Sunday, 10 March, 1-3PM
Next Thursday, we will tell you

¤ What time you will be assigned to take it 
¤ What to do if you can’t take it then but can take the other one
¤ What to do if you can’t take it that evening.
¤ What to do if authorized for more time or quiet space

Help in providing code coverage
3

White-box testing: make sure each part of program is “exercised” 
in at least one test case. Called code coverage.

Eclipse has a tool for showing you how good your code coverage 
is! Use it on A3 (and any programs you write)

JavaHyperText entry:

code coverage

We demo it.

What Makes a Good Algorithm?
4

Suppose you have two possible algorithms that do the 
same thing; which is better?

What do we mean by better?
¤ Faster?
¤ Less space?
¤ Simpler?
¤ Easier to code?
¤ Easier to maintain?
¤ Required for homework?

FIRST, Aim for simplicity, 
ease of understanding, 
correctness. 

SECOND, Worry about 
efficiency only when it is 
needed.

How do we measure speed of an algorithm?

Basic Step: one “constant time” operation
5

Basic step:
¤ Input/output of a number
¤ Access value of primitive-type variable, array element, or 

object field
¤ assign to variable, array element, or object field ***
¤ do one arithmetic or logical operation
¤ method call (not counting arg evaluation and execution of 

method body)

Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time is 
bounded above by some number 

Counting Steps
6

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1){

sum= sum + k;
}

All basic steps take time 1.
There are n loop iterations. 
Therefore, takes time 
proportional to n.

Statement: # times done 
sum= 0; 1
k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3
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Statement: # times done 
s= ""; 1
k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
7

// Store n copies of ‘c’ in s 
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){

s=  s + 'c';
}

Catenation is not a basic step. 
For each k, catenation creates 
and fills k array elements. 

String@00
Stringb

char[]

char[]@02
char[]0 ‘d’

String Catenation
8

s= s + “c”;    is NOT constant time.
It takes time proportional to 1 + length of s

s

1 ‘x’

String@90
Stringb

char[]

char[]@018
char[]0 ‘d’

1 ‘x’
2 ‘c’

Basic steps executed in s= s + ‘c’;
9

s=  s + 'c’;  // Suppose length of s is k

1. Create new String object, say C basic steps.
2. Copy k chars from object s to the new object: k basic steps
3. Place char ‘c’ into the new object: 1 basic step.
4. Store pointer to new object into s: 1 basic step.
Total of (C+2) + k basic steps.

In the algorithm,   s= s + ‘c’;  is executed n times:
s= s + ‘c’;      with length of s = 0
s=  s + ‘c’;      with length of s = 1
…
s=  s + ‘c’;      with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

Basic steps executed in s= s + ‘c’;
10

s=  s + 'c’;  // Suppose length of s is k

In the algorithm,   s= s + ‘c’;  is executed as follows:
s= s + ‘c’;      with length of s = 0
s=  s + ‘c’;      with length of s = 1
…
s=  s + ‘c’;      with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

0 + 1 + 2 + … n-1 = n(n-1) / 2.  Gauss figured this out in the 1700’s
= n2/2 – n/2.

mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

Basic steps executed in s= s + ‘c’;
11

s=  s + 'c’;  // Suppose length of s is k

In the algorithm,   s= s + ‘c’;  is executed as follows:
s= s + ‘c’;      with length of s = 0
s=  s + ‘c’;      with length of s = 1
…
s=  s + ‘c’;      with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

Total of n*(C+2) + n2/2 – n/2 basic steps

Total of n*(C+2) + n2/2 – n/2 basic steps. Quadratic in n.

Not all operations are basic steps
12

// Store n copies of ‘c’ in s 
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){

s=  s + 'c';
}

Statement: # times # steps 
s= ""; 1 1 
k= 1; 1 1
k <= n n+1 1
k= k+1; n 1
s= s + 'c’; see to left
Total steps: …
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Quadratic algorithm in n
Total steps:
2n + 3 +
n*(C+2) + n2/2 – n/2 

for s= s + ‘c’;

http://mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html
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Linear versus quadractic
13

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1)

sum= sum + n

// Store n copies of ‘c’ in s 
s= “”;
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k = n; k= k+1)

s=  s + ‘c’;

In comparing the runtimes of these algorithms, the exact number 
of basic steps is not important. What’s important is that

One is linear in n —takes time proportional to n
One is quadratic in n —takes time proportional to n2

Linear algorithm Quadratic algorithm

Looking at execution speed
14

size n of the array0  1  2  3  …

Number of 
operations 
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all linear in n, 
proportional to n

What do we want from a 
definition of “runtime complexity”?

15

size n of problem0  1  2  3  …

Number of 
operations 
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases 
for large n, not small n

2. Distinguish among 
important cases, like
• n*n basic operations
• n basic operations
• log n basic operations
• 5 basic operations

3. Don’t distinguish among 
trivially different cases.
•5 or 50 operations
•n, n+2, or 4n operations

"Big O" Notation
16

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)

c·g(n)
f(n)

N

Get out far enough 
(for n ≥ N)
f(n) is at most c·g(n)

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

Methodology:

Start with f(n) and slowly transform into c · g(n):
¨ Use  =   and  <=  and  <  steps
¨ At appropriate point, can choose N to help calculation
¨ At appropriate point, can choose c to help calculation

17

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)
f(n)

=         <definition of f(n)>
2n2 + n

<=       <for n ≥ 1,  n ≤ n2>
2n2 + n2

=          <arith>
3*n2

=           <definition of g(n) = n2>
3*g(n)

18

Choose
N = 1 and c = 3

Transform f(n) into c·g(n):
•Use  =, <= , <  steps
•Choose N to help calc.
•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)
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Prove that 100 n + log n   is   O(n)

19

f(n)

=         <put in what f(n) is>
100 n  +   log n

<=        <We know log n ≤ n for n ≥ 1>
100 n + n

=         <arith>

101 n
=         <g(n) = n>

101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)

O(…) Examples
20

Let f(n) = 3n2 + 6n – 7
¤ f(n) is O(n2)
¤ f(n) is O(n3)
¤ f(n) is O(n4)
¤ …

p(n) = 4 n log n + 34 n – 89
¤ p(n) is O(n log n)
¤ p(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
¤ a(n) is O(1)

Only the leading term (the 
term that grows most 
rapidly) matters

If it’s O(n2), it’s also O(n3)
etc!  However, we always 
use the smallest one

Do NOT say or write f(n) = O(g(n))

21

f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

We know that n+2 is O(n) and n+3 is O(n). Suppose we use =

n+2 = O(n)
n+3 = O(n)

But then, by transitivity of equality, we have n+2 = n+3.
We have proved something that is false. Not good.

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)

Problem-size examples
22

¨ Suppose a computer can execute 1000 operations 
per second; how large a problem can we solve?

operations 1 second 1 minute 1 hour
n 1000 60,000 3,600,000

n log n 140 4893 200,000
n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21

Commonly Seen Time Bounds
23

O(1) constant excellent
O(log n) logarithmic excellent

O(n) linear good
O(n log n) n log n pretty good

O(n2) quadratic maybe OK
O(n3) cubic maybe OK
O(2n) exponential too slow

Search for v in b[0..]
24

Methodology:
1. Define pre and post 

conditions.
2. Draw the invariant as a 

combination of pre and 
post.

3. Develop loop using 4 
loopy questions.

Practice doing this!

Q: v is in array b
Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.
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Search for v in b[0..]
25 Q: v is in array b

Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

Methodology:
1. Define pre and post 

conditions.
2. Draw the invariant as a 

combination of pre and 
post.

3. Develop loop using 4 
loopy questions.

Practice doing this!

post: b                              
0                i b.length
≠ " " ?

pre:b                                            
0                               b.length

v in here

inv: b                              
0         i b.length
≠ " v in here

The Four Loopy Questions

¨ Does it start right? 
Is {Q} init {P} true?

¨ Does it continue right?
Is {P && B} S {P} true?

¨ Does it end right? 
Is P && !B => R true?

¨ Will it get to the end? 
Does it make progress 
toward termination?

26

Search for v in b[0..]
27

while (              ) {

}

i= 0;
b[i] != v

i= i+1;

Each iteration takes 
constant time.

Worst case: b.length
iterationsLinear algorithm: O(b.length)

pre:b                                            
0                               b.length

v in here

Q: v is in array b
Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

post: b                              
0                i b.length
≠ " " ?

inv: b                              
0         i b.length
≠ " v in here

Binary search for v in sorted b[0..]
28 // b is sorted. Store in i a value to truthify R:

//         b[0..i] <= v < b[i+1..]

Methodology:
1. Define pre and post 

conditions.
2. Draw the invariant as a 

combination of pre and 
post.

3. Develop loop using 4 
loopy questions.

Practice doing this!

pre:b                                            
0                               b.length

sorted

post: b                              
0             i b.length
≤ " > "

inv: b                              
0       i k        b.length

> "≤ " ?

b is sorted. We know that. To avoid 
clutter, don’t write in it invariant

Binary search for v in sorted b[0..]
29 // b is sorted. Store in i a value to truthify R:

//         b[0..i] <= v < b[i+1..]

while (           ) {

}

i= -1;
k= b.length;

i+1< k
int e=(i+k)/2;
// -1 ≤ i < e < k ≤ b.lengthpost: b                              

0             i b.length
≤ " > "

inv: b                              
0       i k        b.length

> "≤ " ?

pre:b                                            
0                               b.length

sorted

0           i k        
> "≤ "

e

if (b[e] <= v)  i= e;
else k= e;

≤ "

Binary search for v in sorted b[0..]
30 // b is sorted. Store in i a value to truthify R:

//         b[0..i] <= v < b[i+1..]

while (           ) {

}

i= -1;
k= b.length;

i+1< k
int e=(i+k)/2;
// -1 ≤ e < k ≤ b.length
if (b[e] <= v)  i= e;
else k= e;

Each iteration takes constant time.

Worst case: 
log(b.length) iterations

Logarithmic: O(log(b.length))

post: b                              
0             i b.length
≤ " > "

inv: b                              
0       i k        b.length

> "≤ " ?

pre:b                                            
0                               b.length

sorted
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Binary search for v in sorted b[0..]
31 // b is sorted. Store in i a value to truthify R:

//         b[0..i] <= v < b[i+1..]

while (           ) {

}

i= -1;
k= b.length;

i+1< k
int e=(i+k)/2;
// -1 ≤ e < k ≤ b.length
if (b[e] <= v)  i= e;
else k= e;

Each iteration takes constant time.

Worst case: 
log(b.length) iterations

Logarithmic: O(log(b.length))

This algorithm is better than binary 
searches that stop when v is found.
1. Gives good info when v not in b.
2. Works when b is empty.
3. Finds first occurrence of v, not 

arbitrary one.
4. Correctness, including making 

progress, easily seen using invariant 

Dutch National Flag Algorithm
32

Dutch national flag. Swap b[0..n-1] to put the reds first, then 
the whites, then the blues.  That is, given precondition Q, swap 
values of b[0.n-1] to truthify postcondition R: 

? 

0                                                          n

Q: b

reds            whites             blues  

0                                                          n
R: b

Dutch National Flag Algorithm

reds      whites       blues        ?  

0                                                          n

P1: b

reds      whites          ?           blues  

0                                                          n
P2: b

Suppose we use
invariant P1.

What does the 
repetend do?

2 swaps to get a 
red in place

Dutch national flag. Swap b[0..n-1] to put the reds first, then 
the whites, then the blues.  That is, given precondition Q, swap 
values of b[0.n-1] to truthify postcondition R: 

? 

0                                                          n

Q: b

reds            whites             blues  

0                                                          n
R: b

Dutch National Flag Algorithm

reds      whites       blues        ?  

0                                                          n

P1: b

reds      whites          ?           blues  

0                                                          n
P2: b

Suppose we use
invariant P2.

What does the 
repetend do?

At most one swap 
per iteration

Compare algorithms 
without writing code!

? 
0                                                n

Q: b

reds         whites         blues  
0                                                n

R: b

Dutch National Flag Algorithm: invariant P1

reds   whites     blues        ?  
0                                                n

P1: b
h            k            p

h= 0; k= h; p= k;
while (           ) {

}

p != n
if (b[p] blue)
else if (b[p] white) {

}
else { // b[p] red

}

p=  p+1;

swap b[p], b[k];
p= p+1; k= k+1;

swap b[p], b[h];
swap b[p], b[k];
p= p+1; h=h+1; k= k+1;

? 
0                                                n

Q: b

reds         whites         blues  
0                                                n

R: b

36

Dutch National Flag Algorithm: invariant P2

reds   whites      ?          blues  
0                                                n

P2: b
h            k            p

h= 0; k= h; p= n;
while (           ) {

}

k != p

if (b[k] white)
else if (b[k] blue) {

}
else { // b[k] is red

}

k=  k+1;

p= p-1;
swap b[k], b[p];

swap b[k], b[h];
h= h+1; k= k+1;
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Asymptotically, which algorithm is faster?

Invariant 1 Invariant 2

37

h= 0; k= h; p= k;
while (           ) {

}

p != n
if (b[p] blue)
else if (b[p] white) {

}
else { // b[p] red

}

p=  p+1;

swap b[p], b[k];
p= p+1; k= k+1;

swap b[p], b[h];
swap b[p], b[k];
p= p+1; h=h+1; k= k+1;

h= 0; k= h; p= n;
while (           ) {

}

if (b[k] white)
else if (b[k] blue) {

}
else { // b[k] is red

}

k=  k+1;

p= p-1;
swap b[k], b[p];

swap b[k], b[h];
h= h+1; k= k+1;

k != p

reds   whites     blues        ?  
0       h            k            p           n

reds   whites      ?          blues  
0       h             k            p          n

Asymptotically, which algorithm is faster?

Invariant 1 Invariant 2

38

h= 0; k= h; p= k;
while (           ) {

}

p != n
if (b[p] blue)
else if (b[p] white) {

}
else { // b[p] red

}

p=  p+1;

swap b[p], b[k];
p= p+1; k= k+1;

swap b[p], b[h];
swap b[p], b[k];
p= p+1; h=h+1; k= k+1;

h= 0; k= h; p= n;
while (           ) {

}

if (b[k] white)
else if (b[k] blue) {

}
else { // b[k] is red

}

k=  k+1;

p= p-1;
swap b[k], b[p];

swap b[k], b[h];
h= h+1; k= k+1;

k != pmight use 2 swaps per iteration uses at most 1 swap per iteration

These two algorithms have the same asymptotic running time
(both are O(n))

reds   whites     blues        ?  
0       h            k            p           n

reds   whites      ?          blues  
0       h             k            p          n


