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1. If appropriate, please check JavaHyperText before posting 

a question on the Piazza. Get your answer instantaneously 

rather than have to wait for a Piazza answer. 

Examples: “default”, “access”, “modifier”, “private” 

are well-explained JavaHyperText



Why is the product of an empty bag of values 1?
Suppose bag b contains 2, 2, 5 and p is its product: 20.
Suppose we want to add 4 to the bag and keep p the product. 
We do:

put 4 into the bag;
p= 4 * p;

Suppose bag b is empty and p is its product: what value?
Suppose we want to add 4 to the bag and keep p the product. 
We do the same thing:

put 4 into the bag;
p= 4 * p;

For this to work, the product of the empty bag has to be 1, 
since 4 = 1 * 4

// invariant: p = product of c[0..k-1]
what’s the product when k == 0?



0 is the identity of + because 0 + x = x
1 is the identity of * because 1 * x = x
false is the identity of ||  because    false || b  = b
true is the identity of && because true && b  = b
1 is the identity of gcd because gcd({1, x}) = x
For any such operator o, that has an identity,
o of the empty bag is the identity of o.
Sum of the empty bag = 0
Product of the empty bag = 1
OR (||) of the empty bag = false.
gcd of the empty bag = 1

gcd: greatest common divisor of the elements of the bag



Recap: Understanding Recursive Methods
5

1. Have a precise specification

2. Check that the method works in the base case(s).

3. Look at the recursive case(s). In your mind, replace each 
recursive call by what it does according to the spec and 
verify correctness.

4. (No infinite recursion) Make sure that the args of 
recursive calls are in some sense smaller than the pars of the 
method.

http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-1


Problems with recursive structure
6

Code will be available on the course webpage.

1. exp - exponentiation, the slow way and the fast way

2. tile-a-kitchen – place L-shaped tiles on a kitchen floor

3. perms – list all permutations of a string

4. drawSierpinski – drawing the Sierpinski Triangle



Computing bn for n >= 0
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Power computation:
¤ b0 = 1

¤ If n != 0, bn = b * bn-1

¤ If n != 0 and even, bn = (b*b)n/2

Judicious use of the third property gives far better algorithm

Example: 38 =  (3*3) * (3*3) * (3*3) * (3*3)  =  (3*3) 4



Computing bn for n >= 0
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Power computation:
¤ b0 = 1

¤ If n != 0, bn = b bn-1

¤ If n != 0 and even, bn = (b*b)n/2

/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {

if (n == 0) return 1;
if (n%2 == 0) return power(b*b, n/2);
return b * power(b, n-1);

}

Suppose n = 16
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0

16 = 2**4
Suppose n = 2**k
Will make k + 2 calls



Computing bn for n >= 0
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/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {

if (n == 0) return 1;
if (n%2 == 0) return power(b*b, n/2);
return b * power(b, n-1);

}

Suppose n = 16
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0

16 = 2**4
Suppose n = 2**k
Will make k + 2 calls

If  n = 2**k
k  is called the logarithm (to base 2)
of  n:   k = log n  or  k = log(n)



Difference between linear and log solutions?
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/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {

if (n == 0) return 1;
if (n%2 == 0) return power(b*b, n/2);
return b * power(b, n-1);

}

/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {

if (n == 0) return 1;
return b * power(b, n-1);

}

Number of recursive 
calls is n

Number of recursive 
calls is ~ log n.

To show difference, 
we run linear 
version with bigger 
n until out of stack 
space. Then run log 
one on that n. See 
demo.



Table of log to the base 2
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k n = 2^k log n (= k)
0      1   0
1 2 1
2 4 2
3 8 3
4 16 4
5 32 5
6 64 6
7 128 7
8 256 8
9 512 9
10 1024 10
11 2148 11
15   32768 15



Tiling Elaine’s kitchen
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Kitchen in Gries’s house: 8 x 8. Fridge sits on one of 1x1 squares
His wife, Elaine, wants kitchen tiled with el-shaped tiles –every 
square except where the refrigerator sits should be tiled.

8

8/** tile a 23 by 23 kitchen with 1
square filled. */ 

public static void tile(int n)

We abstract away keeping track 
of where the filled square is, etc.



Tiling Elaine’s kitchen
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/** tile a 2n by 2n kitchen with 1
square filled. */ 

public static void tile(int n) {

}

We generalize to a 2n by 2n kitchen  
Base case?

if (n == 0) return; 



Tiling Elaine’s kitchen
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/** tile a 2n by 2n kitchen with 1
square filled. */ 

public static void tile(int n) {

}

n  > 0. What can we do to get kitchens of size 2n-1 by 2n-1

if (n == 0) return; 2n

2n



Tiling Elaine’s kitchen
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/** tile a 2n by 2n kitchen with 1
square filled. */ 

public static void tile(int n) {

}
We can tile the upper-right 2n-1 by 2n-1 kitchen recursively.
But we can’t tile the other three because they don’t have a filled 
square.
What can we do? Remember, the idea is to tile the kitchen!

if (n == 0) return; 



Tiling Elaine’s kitchen
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/** tile a 2n by 2n kitchen with 1
square filled. */ 

public static void tile(int n) {

}

if (n == 0) return;
Place one tile so that each kitchen 
has one square filled;

Tile upper left kitchen recursively;
Tile upper right kitchen recursively;
Tile lower left kitchen recursively;
Tile lower right kitchen recursively;



Permutations of a String
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perms(abc): abc, acb, bac, bca, cab, cba

abc acb
bac bca
cab cba

Recursive definition:
Each possible first letter, followed by all permutations of
the remaining characters.



S triangle of depth 2:  3 S 
triangles of depth 1 drawn at 
the 3 vertices of the triangle 

Sierpinski triangles
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S triangle of depth 0

S triangle of depth 1:  3 S triangles of 
depth 0 drawn at the 3 vertices of the 
triangle 



S triangle of depth d at 
points p1, p2, p3:

3 S triangles of depth d-1 
drawn at at p1, p2, p3

Sierpinski triangles
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S triangle of depth 0:  the triangle

p1 p2

p3

Sierpinski
triangles of 
depth d-1



Sierpinski triangles
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Conclusion
21

Recursion is a convenient and powerful way to define 
functions

Problems that seem insurmountable can often be solved in a 
“divide-and-conquer” fashion:

¤ Reduce a big problem to smaller problems of the same 
kind, solve the smaller problems

¤ Recombine the solutions to smaller problems to form 
solution for big problem

http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-1

