
31/01/2019

1

CS/ENGRD 2110
SPRING 2019
Lecture 4: The class hierarchy; static components
http://cs.cornell.edu/courses/cs2110

1

Announcements
2

We're pleased with how many people are already working on
A1, as evidenced by Piazza activity!
¨ Please be sure to look at Piazza note @10 every day for any

updates.
¨ Also search existing questions!
¨ Groups: Forming a group of two? Do it well before you submit

– at least one day before. Both members must act: one
invites, the other accepts. Thereafter, only one member has to
submit the files. If one of you submits before forming the
group, the course staff will have to do extra work, and you’ll
receive a small penalty of 4 points.

¨ Reminder: groups must complete the assignment working
together.

Big ideas so far
3

¨ Java variables have types (L1)
¤ A type is a set of values and operations on them

(int: +, -, *, /, %, etc.)

¨ Classes define new types (L2)
¤ Methods are the operations on objects of that class.

¤ Fields allow objects to store data (L3)

¨ A software engineering principle: give user access
to functionality, not the implementation details…

Review: Method specs should not mention fields
4

public class Time {
private int hr; //in 0..23
private int min; //in 0..59
/** return hour of day*/
public int getHour() {
return hr;

}

/** return hour of day*/
public int getHour() {

returnmin / 60;
}

Time@fa8
Timehr 9

min 5
getHour()
getMin()
toString()setHour(int)

public class Time {
// min, in 0..23*60+59
private int min;

Time@fa8
Timemin 545

getHour() getMin()
toString() setHour(int)

Specs of methods stay the same.
Implementations, including fields, change!

Decide
to change
implemen

-tation

Today’s topics
5

¨ Class Object
¨ Extends, is-a
¨ Method toString(), object names, overriding

¨ Keyword this, shadowing
¨ Static components

Running example: Class W (for Worker)
6

/** Constructor: worker with last name n, SSN s, boss b (null if none).
Prec: n not null, s in 0..999999999 with no leading zeros.*/

publicW(String n, int s, W b)

/** = worker's last name */
public String getLname()

/** = last 4 SSN digits */
public String getSsn()

/** = worker's boss (null if none) */
publicW getBoss()

/** Set boss to b */
public void setBoss(W b)

W@af
Wlname �Pollack�

ssn 123456789
boss null

W(…) getLname()
getSsn() getBoss() setBoss(W)

Contains other methods!

toString()
equals(Object) hashCode()

31/01/2019

2

Class Object
7

Java: Every class that does not
extend another extends class
Object. That is,

public class W {…}

is equivalent to

public class W extends Object {…}

W@af

Wlname �Pollack�
ssn 123456789

boss null
W(…) getLname()
getSsn(), getBoss() setBoss(W)

ObjecttoString()
equals(Object) hashCode()

We draw object like this:

We often omit this partition to
reduce clutter; we know that it
is always there.

Extends: “Is A”
8

¨ Extension should reflect semantic data model:
meaning in real world

¨ A should extend B if and only if A “is a” B
¤ An elephant is an animal, so Elephant extends Animal

¤ A car is a vehicle, so Car extends Vehicle

¤ An instance of any class is an object, so
AnyClass extends java.lang.Object

Extends: “Is A”
9

Which of the following seem like reasonable designs?
A. Triangle extends Shape { … }
B. PhDTester extends PhD { … }

C. BankAccount extends CheckingAccount { … }

Extends: “Is A”
10

Which of the following seem like reasonable designs?
A. Triangle extends Shape { … }

A. Yes! A triangle is a kind of shape.

B. PhDTester extends PhD { … }
A. No! A PhDTester “tests a” PhD, but itself is not a PhD.

C. BankAccount extends CheckingAccount { … }
A. No! A checking account is a kind of bank account; we

likely would prefer:

CheckingAccount extends BankAccount { ... }

Investigate: JFrame
11

1. How many levels deep is JFrame in the class
hierarchy?

¤ (Object is JFrame’s super-super-…-superclass. How
many supers are there?)

2. In which class is JFrame’s getHeight() method
defined?

¤ (hint: it’s not JFrame!)

What’s in a name?
12

The name of the object below is

PhD@aa11bb24

The name is <class> @ <address in memory>.

�Gries�
nullad1 ad2

advisees
null

17

name

PhD@aa11bb24

PhD@aa11bb24e
PhD

Variable e, declared as
PhD e;

contains not the object but the
name of the object (i.e., it is a
reference to the object).

PhD

31/01/2019

3

Method toString()
13

Object
W@af

lname �Pollack�
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

Java Convention: Define toString() in
any class to return a representation of an
object, giving info about the values in its
fields.

New definitions of toString() override
the definition in Object.toString()

e W@af

toString() …e.toString() calls this method

In appropriate places, the expression
e automatically does e.toString()

Method toString()
14

Object
W@af

lname �Pollack�
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

public class W {

…

/** Return a representation of this object */
public String toString() {
return “Worker ” + lname

+ “ has SSN ???-??-” + getSsn()
+ (boss == null

? “”
: “ and boss ” + boss.lname);

}

e W@af

toString() …e.toString() calls this method

conditional
expression

Another example of toString()
15

/** An instance represents a point (x, y) in the plane */
public class Point {

private int x; // x-coordinate
private int y; // y-coordinate
…
/** = repr. of this point in form �(x, y)� */
public String toString() {

return “(” + x + “, ” + y + “)”;
}

}

Point@fa8
Point

x 9 y 5

Function toString should give the values in the
fields in a format that makes sense for the class.

(9, 5)

this: the object’s own name
16

¨ this keyword: this evaluates to the name of the object in
which it occurs

¨ Makes it possible for an object to access its own name
¨ Example: a shadowed class field

public class Point {
public int x= 0;
public int y= 0;

public Point(int x, int y) {
x= x;
y= y;

}
}

public class Point {
public int x= 0;
public int y= 0;

public Point(int x, int y) {
this.x= x;
this.y= y;

}
}

Static components
17

W@af
W

lname �Om”
boss null

isBoss(W c) {
…}

W@b4
W

lname �Jo”
boss W@af

isBoss(W c) {
return
this == c.boss; }

/** = �this object is c�s boss�.
Pre: c is not null. */

public boolean isBoss(W c) {
return this == c.boss;

}

keyword this evaluates
to the name of the object

in which it appears

x.isBoss(y) is false

y W@afx W@b4

y.isBoss(x) is true

Spec: return the value of
that true-false sentence.
True if this object is c’s
boss, false otherwise

Static components
18

W@af
W

lname �Om”

ssn 35
boss null

isBoss(W)

W@b4
W

lname �Jo”

ssn 21
boss W@af

isBoss(W)

/** = �this object is c�s boss�.
Pre: c is not null. */

public boolean isBoss(W c) {
return this == c.boss;

}

/** = �b is c�s boss�.
Pre: b and c are not null. */

public boolean isBoss(W b, W c) {
return b == c.getBoss();

}

isBoss(W,W) isBoss(W,W)

y W@afx W@b4

Body doesn’t refer to any
field or method in the object.

Why put method in object?

31/01/2019

4

Static components
19

W@af
W

lname �Om”

ssn 35
boss null

isBoss(W)

W@b4
W

lname �Jo”

ssn 21
boss W@af

isBoss(W)

/** = �b is c�s boss�.
Pre: b and c are not null. */

public static boolean isBoss(W b, W c) {
return b == c.getBoss();

}

isBoss(W,W) y W@afx W@b4

static: there is only one
copy of the method. It is
not in each object

Box for W (objects, static components)

x.isBoss(x, y)
y.isBoss(x, y)

Preferred:
W.isBoss(x, y)

Good example of static methods
20

java.lang.Math
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

(Or find it by googling java.lang.Math 8)

A use for static fields (aka class variables):
Maintain info about created objects

21

W@12

W

lname �Kn�

W@bd

W

�Ra�lname

numObs 2
Box for W

public class W {
private static int numObs; // number of W objects created

}
To have numObs contain the
number of objects of class W
that have been created, simply
increment it in constructors.

/** Constructor: */
public W(…) {

…
numObs= numObs + 1;

}

An instance of class Color describes a color in the RGB (Red-Green-
Blue) color space. The class contains about 20 static variables, each
of which is (i.e. contains a pointer to) a non-changeable Color object
for a given color:

public static final Color black= …;
public static final Color blue= …;
public static final Color cyan= new Color(0, 255, 255);
public static final Color darkGray= …;
public static final Color gray= …;
public static final Color green= …;
…

Class java.awt.Color uses static fields
22

Java application
23

Java application: a program with at least
one class that has this procedure:

public static void main(String[] args) {

…
}

Type String[]: array of
elements of type String.
We will discuss later

Running the application effectively calls method main

Command line arguments can be entered with args

public class Singleton {
private static final Singleton instance= new Singleton();

private Singleton() { } // ... constructor

public static Singleton getInstance() {
return instance;

}

// ... methods
}

Uses of static fields:
Implement the Singleton pattern

24

Singleton@x3k3

Singleton

instance
Box for

Singleton

Only one Singleton can ever exist.

…

Singleton@x3k3

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

31/01/2019

5

Looking ahead: Recitation 3
25

¨ No prework! Concentrate on A1 this weekend
¨ TA teaches testing; you test a class using Junit
¨ You can work in groups of up to 3; form a CMS

group before submitting
¨ You will find faults in the class (fun!) and fix them
¨ Upload to CMS when done

¤ Hopefully during recitation

¤ If not, on/by Friday

